People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Suárez, Isaac
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Frequency Response of MAPbI3 Perovskites for Photodetection Application
- 2024Waveguide Amplifiers and Lasers Based on FASnI3 Perovskite Thin Films
- 2023Superradiance Emission and Its Thermal Decoherence in Lead Halide Perovskites Superlatticescitations
- 2023Superradiance Emission and Its Thermal Decoherence in Lead Halide Perovskites Superlatticescitations
- 2023Unusual Spectrally Reproducible and High Q-Factor Random Lasing in Polycrystalline Tin Perovskite Filmscitations
- 2023Enhanced spontaneous emission of CsPbI3 perovskite nanocrystals using a hyperbolic metamaterial modified by dielectric nanoantennacitations
- 2022Directional and Polarized Lasing Action on Pb-free FASnI3 Integrated in Flexible Optical Waveguidecitations
- 2021Purcell Enhancement and Wavelength Shift of Emitted Light by CsPbI3 Perovskite Nanocrystals Coupled to Hyperbolic Metamaterialscitations
- 2021Inhomogeneous Broadening of Photoluminescence Spectra and Kinetics of Nanometer-Thick (Phenethylammonium)2PbI4 Perovskite Thin Films: Implications for Optoelectronicscitations
- 2020Interpretation of the photoluminescence decay kinetics in metal halide perovskite nanocrystals and thin polycrystalline filmscitations
- 2020MWP phase shifters integrated in PbS-SU8 waveguidescitations
- 2020Mechanisms of spontaneous and amplified spontaneous emission in CH3NH3Pb I3 perovskite thin films integrated in an optical waveguidecitations
- 2019Outstanding nonlinear optical properties of methylammonium- and Cs-PbX3 (X = Br, I, and Br–I) perovskites: Polycrystalline thin films and nanoparticlescitations
- 2019Outstanding nonlinear optical properties of methylammonium- and Cs-PbX3 (X = Br, I, and Br–I) perovskites: Polycrystalline thin films and nanoparticlescitations
- 2019Outstanding nonlinear optical properties of methylammonium- and Cs-PbX3 (X = Br, I, and Br–I) perovskites: Polycrystalline thin films and nanoparticles
- 2019Structural characterization of bulk and nanoparticle lead halide perovskite thin films by (S)TEM techniquescitations
- 2016Single Step Deposition of an Interacting Layer of Perovskite Matrix with Embedded Quantum Dotscitations
- 2011Photoluminescence waveguiding in CdSe and CdTe QDs–PMMA nanocomposite films
Places of action
Organizations | Location | People |
---|
document
Outstanding nonlinear optical properties of methylammonium- and Cs-PbX3 (X = Br, I, and Br–I) perovskites: Polycrystalline thin films and nanoparticles
Abstract
Metal Halide Perovskites (MHPs) have arisen as promising materials to construct cost-effective photovoltaic and light emission devices. The study of nonlinear optical properties of MHPs is necessary to get similar success in nonlinear photonic devices, which is practically absent in the literature. The determination of the third order nonlinear coefficients is typically done by the Z-scan technique, which is limited by the scattering of polycrystalline thin films. In this work, we have studied nonlinear optical properties of polycrystalline CH3NH3PbX3 (MAPbX3) thin films and colloidal CsPbX3 nanoparticles with three different bandgaps (X3 = I3, Br3, and Br1.5I1.5). Their bright generation of photoluminescence under infrared illumination demonstrates an excellent efficiency of multiphoton absorption. The nonlinear absorption coefficient (β) was studied by analyzing the transmitted light through the samples, observing the expected Eg−3 dependence with values as high as β = 1500 cm/GW. In addition, we proposed the use of a modified Z-scan technique with imaging processing to analyze the nonlinear refraction coefficient (n2) under the laser damage threshold. Our experimental data agree quite well with theoretical predictions, demonstrating the accuracy of the method and potential applications to other thin films. Moreover, n2 parameter reaches values of 3.5 cm2/GW, indicating the suitability of MHPs for nonlinear photonics.