Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aouf, Djaber

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Electrochemical Synthesis of Reduced Graphene Oxide‐Wrapped Polyaniline Nanorods As An Active Nanocomposite For Improved Photocurrent Generation And Photocatalytic And Antibacterial Activitiescitations

Places of action

Chart of shared publication
Harfouche, Nessrine
1 / 1 shared
Hakim, Belkhalfa
1 / 1 shared
Fenniche, Fares
1 / 2 shared
Bensalem, Soufiane
1 / 4 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Harfouche, Nessrine
  • Hakim, Belkhalfa
  • Fenniche, Fares
  • Bensalem, Soufiane
OrganizationsLocationPeople

document

Electrochemical Synthesis of Reduced Graphene Oxide‐Wrapped Polyaniline Nanorods As An Active Nanocomposite For Improved Photocurrent Generation And Photocatalytic And Antibacterial Activities

  • Aouf, Djaber
  • Harfouche, Nessrine
  • Hakim, Belkhalfa
  • Fenniche, Fares
  • Bensalem, Soufiane
Abstract

his study depicts the electrochemical synthesis of nanocomposites basede on Polyaniline nanorods wrap with reduced graphene oxide (PANI-rGO) on ITO substrates. Synthesis of PANI-rGO nanocomposites was elaborated by the incorporation of rGO in PANI thin films during electropolymerization in the presence of sulfuric acid. The synthesis of reduced graphene oxide was by modification on the well-known Hammer's method. The thin films nanocomposites were characterized by X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (FESEM), UV–Visible and electrochemical photocurrent spectroscopy. FESEM revealed the formation of PANI nanorods with diameters between 50 and 150 nm. The XPS was employed to confirm the compositions of PANI-rGO nanocomposites. From photoelectrochemical results, the generated photocurrent was improved in the presence of rGO in PANI Nanorods. Whereas, experimental findings show that the introduction of rGO into PANI improved the photo response from 7 µA.cm -2 to 13 µA.cm -2 . Integration of 3D rGO in PANI results in better photocatalytic performance for the degradation of Congo Red. The enhanced photocatalytic activity with presence of rGO revealed the good potential of PANI-GO nanocomposites for dye degradation. The effective removal of congo red up to 90% has been observed in acidic medium and is acceptable results compared to the surface area of the substrate. At optimum conditions, also the nature of the antibacterial activities has been investigated by ITO/PANI and ITO/PANI-rGO thin films, and the results have showed exhibited antibacterial activity against the growth of E.coli gram-negative bacteria.

Topics
  • nanocomposite
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • thin film
  • x-ray photoelectron spectroscopy