Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Odonovan, Anthonia

  • Google
  • 1
  • 1
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Mycogenic Silver Nanoparticles from Endophytic Trichoderma atroviride with Antimicrobial Activitycitations

Places of action

Chart of shared publication
Thakur, Vijay Kumar
1 / 125 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Thakur, Vijay Kumar
OrganizationsLocationPeople

document

Mycogenic Silver Nanoparticles from Endophytic Trichoderma atroviride with Antimicrobial Activity

  • Thakur, Vijay Kumar
  • Odonovan, Anthonia
Abstract

There is an increasing interest in developing nanoparticles with diverse biologic activities. To this end, we prepared 10 to 15 nm silver nanoparticles (AgNP) from native isolates of Trichoderma atroviride. Within this study, endophytic fungi hosted four medicinal plants in Saint Katherine Protectorate, South Sinai, Egypt have been isolated by surface sterilization technique on four isolation media. Ten species, based on their frequency of occurrence, out of twenty recovered taxa were tested for their capability to synthesize extracellular AgNPs. Trichoderma atroviride hosted Chiliadenus montanus was found to be the best candidate for the production of mycogenic AgNPs among all examined species. The mycosynthesized AgNPs were compared with chemically synthesized and characterized using Ultraviolet-visible (UV-vis) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) techniques. The HRTEM result showed the distribution of spherical AgNPs ranging from 10 to 15 nm. Trichoderma atroviride isolate was subjected to sequencing for confirmation of phenotypic identification. The internal transcribed spacer (ITS) 1–5.8 s – ITS2 rDNA sequences obtained were compared with those deposited in the GenBank Database and registered with accession number MH283876 in the NCBI Database. Antibacterial, anticandidal and antifungal effects of chemically and mycosynthesized AgNPs were examined at various concentrations in vitro against six pathogenic bacteria and 4 pathogenic fungi by agar well diffusion technique. Standard antibiotics; Gentamicin, Amoxicillin, Clotrimazole, and Nystatin at 5 μg/disk were taken as positive controls, while 5% DMSO was used as the negative control. Our data revealed that the application of mycogenic AgNPs at a concentration of 100 ppm resulted in maximum inhibition of pathogenic bacteria and fungi. These data suggest that AgNPs from native isolates of Trichoderma atroviride (MH283876) offer a source of rapid synthesis of eco-friendly, economical biomaterials that show antimicrobial activities.

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • silver
  • x-ray diffraction
  • transmission electron microscopy
  • biomaterials
  • Raman spectroscopy