People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Grammatikos, Sotirios
Norwegian University of Science and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Surface roughness of as-printed polymers:a comprehensive reviewcitations
- 2023Surface roughness of as-printed polymerscitations
- 2023Three-Dimensional Analysis of Porosity in As-Manufactured Glass Fiber/Vinyl Ester Filament Winded Composites Using X-Ray Micro-Computed Tomographycitations
- 2023Surface roughness of as-printed polymers: a comprehensive reviewcitations
- 2021Effect of stacking sequence on the performance of hybrid natural/synthetic fiber reinforced polymer composite laminates
- 2020Recovery of electronic wastes as fillers for electromagnetic shielding in building components: an LCA studycitations
- 2019Permeable nanomontmorillonite and fibre reinforced cementitious binderscitations
- 2018Pore-structure and microstructural investigation of organomodified/Inorganic nano-montmorillonite cementitious nanocompositescitations
- 2018Pore-structure and microstructural investigation of organomodified/Inorganic nano- montmorillonite cementitious nanocompositescitations
- 2018Impedance spectroscopy as a tool for moisture uptake monitoring in construction composites during servicecitations
Places of action
Organizations | Location | People |
---|
document
Effect of stacking sequence on the performance of hybrid natural/synthetic fiber reinforced polymer composite laminates
Abstract
Here, the effect of stacking sequence on the mechanical and thermomechanical properties of composites using natural fiber (jute), synthetic fiber (glass) and unsaturated polyester resin, is presented. The fabricated composite laminates were neat jute/polyester, neat glass/polyester, and hybrid jute/glass/polyester. It was revealed that neat glass/polyester laminate showed better mechanical performance than the other laminates, and glass fiber hybridization significantly affects the properties of the hybrid laminates. Furthermore, three selected composites were studied using Dynamic Mechanical Analysis (DMA) and Scanning Electron Microscopy (SEM) imaging. Lastly, to improve the mechanical properties of the developed composites, 1 kGy dose of γ-irradiation was applied. As a result, the tensile strength, bending strength, tensile modulus, and bending modulus was increased 10.7, 26.7, 21.5, 36.5% for neat jute/polyester composites; 6.2, 10.9, 50.3, 18.0% for neat glass/polyester composites; and 8.9, 11.9, 21.7, 19.9% for hybrid composites, respectively.