People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Niu, Yubiao
Swansea University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Understanding the electrochemical behaviour of reduced graphene oxide cathodes in all-carbon Na-ion batteries
- 2023Fabrication of graphene nanoplatelets/MgAl-layered double hydroxide nanocomposites as efficient support for gold nanoparticles and their catalytic performance in 4-nitrophenol reduction
- 2019Composition-Tuned Pt-Skinned PtNi Bimetallic Clusters as Highly Efficient Methanol Dehydrogenation Catalystscitations
- 2018Reduced sintering of mass-selected Au clusters on SiO2by alloying with Ti: An aberration-corrected STEM and computational studycitations
- 2018Reduced sintering of mass-selected Au clusters on SiO 2 by alloying with Ti: an aberration-corrected STEM and computational studycitations
- 2016Enhancement of the hydrogen evolution reaction from Ni-MoS2 hybrid nanoclusterscitations
Places of action
Organizations | Location | People |
---|
document
Fabrication of graphene nanoplatelets/MgAl-layered double hydroxide nanocomposites as efficient support for gold nanoparticles and their catalytic performance in 4-nitrophenol reduction
Abstract
The catalytic reduction of 4-nitrophenol is of considerable importance to a multitude of applications and industries. The present work introduces a new catalyst (AuNP/GNP/MgAl-LDH) containing gold nanoparticles (AuNP) supported on graphene nanoplatelets (GNP) intercalated in Mg Al layered double hydroxides (MgAl-LDH) for the reduction of 4-nitrophenol to 4-aminophenol using NaBH4 as a reducing agent. The catalyst was characterised by FTIR, XRD, STEM, TEM, and BET specific surface area. The XRD analysis showed the presence of crystalline phases of gold on the supports, while TEM demonstrated that MgAl-LDH provided uniform binding sites for AuNPs and prevented agglomeration. Similar reaction rate constant was determined for the disappearance of 4-nitrophenol and for the appearance of 4-aminophenol. The reaction rate constant was the highest for AuNP/GNP/MgAl-LDH, followed by AuNP/MgAl-LDH and AuNP/GNP. AuNP/GNP/MgAl-LDH was found stable after five repeated cycles.