Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Etman, Ahmed S.

  • Google
  • 3
  • 8
  • 56

RISE Research Institutes of Sweden

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022MXene-based Zn-ion hybrid supercapacitors: Effects of anion carriers and MXene surface coatings on the capacities and life span24citations
  • 2020Acetonitrile‐Based Electrolytes for Rechargeable Zinc Batteries32citations
  • 2017Simple and Green Method for Fabricating V2O5·nH2O Nanosheets for Lithium Battery Applicationcitations

Places of action

Chart of shared publication
Rosen, Johanna
1 / 15 shared
Halim, Joseph
1 / 6 shared
Sun, Junliang
2 / 3 shared
Carboni, Marco
1 / 1 shared
Younesi, Reza
2 / 22 shared
Inge, Andrew Kentaro
1 / 1 shared
Jiaru, Xu
1 / 1 shared
Edström, Kristina
1 / 18 shared
Chart of publication period
2022
2020
2017

Co-Authors (by relevance)

  • Rosen, Johanna
  • Halim, Joseph
  • Sun, Junliang
  • Carboni, Marco
  • Younesi, Reza
  • Inge, Andrew Kentaro
  • Jiaru, Xu
  • Edström, Kristina
OrganizationsLocationPeople

document

MXene-based Zn-ion hybrid supercapacitors: Effects of anion carriers and MXene surface coatings on the capacities and life span

  • Etman, Ahmed S.
  • Rosen, Johanna
  • Halim, Joseph
Abstract

Energy storage devices such as rechargeable batteries and supercapacitors are of great importance for establishing clean energy sources. Accordingly, the production of these devices needs to rely on sustainable and environmentally friendly materials. This report provides an insight on the use of two-dimensional transition metal carbides (MXene) based electrodes, here shown for Mo1.33CTz-Ti3C2Tz mixed MXene, in Zn-ion hybrid supercapacitors (ZHSC) using aqueous and nonaqueous (acetonitrile-based) electrolytes. The effect of anion carriers on the accessible capacity, rate capability, and life span of the MXene//Zn hybrid supercapacitor is explored in-depth. Halide carriers such as chloride (Cl−) and iodide (I−) feature a superior performance, however, a fast passivation is observed in Cl− based electrolytes and a narrow potential window is achieved in I− based electrolytes. Importantly, a few micron layer of Ti3C2Tz MXene coated on the surface of the Zn anode is found to inhibit the side reactions and passivation observed in ZnCl2 solutions, which enables the use of such low-cost Zn salt in MXene//Ti3C2Tz-coated-Zn cells. The cells can be reversibly cycled over 10,000 cycles, delivering a capacity up to 200 mAh g−1 at low rate (0.5 mV s−1) and a capacity retention of about 36% at high rate (100 mV s−1). Furthermore, the Ti3C2Tz surface coating layer enhanced the coulombic efficiency in Zn(CF3SO3)2 electrolyte without affecting the accessible capacity or the rate capability. This work sheds light on the use of MXenes in sustainable low-cost ZHSC with high energy density and power density as a positive electrode material as well as a surface coating material for the Zn negative electrode.

Topics
  • density
  • impedance spectroscopy
  • surface
  • energy density
  • carbide
  • two-dimensional