Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gillani, Qandeel Fatima

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Effects of Halloysite Nanotube Reinforcement in Expandable Graphite Based Intumescent Fire Retardant Coatings Developed Using Hybrid Epoxy Binder Systemcitations

Places of action

Chart of shared publication
Ahmad, Faiz
1 / 9 shared
Yusoff, Puteri Sri Melor Megat
1 / 2 shared
Mutalib, Mohamed Ibrahim Abdul
1 / 1 shared
Ullah, Sami
1 / 3 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Ahmad, Faiz
  • Yusoff, Puteri Sri Melor Megat
  • Mutalib, Mohamed Ibrahim Abdul
  • Ullah, Sami
OrganizationsLocationPeople

document

Effects of Halloysite Nanotube Reinforcement in Expandable Graphite Based Intumescent Fire Retardant Coatings Developed Using Hybrid Epoxy Binder System

  • Ahmad, Faiz
  • Gillani, Qandeel Fatima
  • Yusoff, Puteri Sri Melor Megat
  • Mutalib, Mohamed Ibrahim Abdul
  • Ullah, Sami
Abstract

In this study, the effects of halloysite nanotubes (HNTs) reinforcement in expandable graphite based intumescent fire retardant coatings (IFRCs) developed using a polydimethylsiloxane (PDMS)/phenol BA epoxy system were investigated. Intumescent coating formulations were developed by incorporating different weight percentages of HNTs and PDMS in basic intumescent ingredients (ammonium polyphosphate/melamine/boric acid/expandable graphite, APP/MEL/BA/EG). The performance of intumescent formulations was investigated by furnace fire test, Bunsen burner fire test, field emission electron microscopy (FESEM), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and Fourier transform infrared analysis (FTIR). The Bunsen burner fire test results indicated that the fire performance of HNTs and PDMS reinforced intumescent formulation has improved due to the development of silicate network over the char residue. Improved expansion in char residue was also noticed in the formulation, SH(3), due to the minimum decomposition of char carbon. FESEM and TEM results validated the development of silicate network over char layer of coating formulations. A considerable mass loss difference was noticed during thermal gravimetric analysis (TGA) of intumescent coating formulations. Reference formulation, SH(0) with no filler, degraded at 300 °C and lost 50% of its total mass but SH(3), due to synergistic effects between PDMS and HNTs, degraded above 400 °C and showed the maximum thermal stability. XRD analysis showed the development of thermally stable compound mulltie, due to the synergism of HNTs and siloxane during intumescent reactions, which enhanced fire performance. FTIR analysis showed the presence of incorporated siloxane and silicates bonds in char residue, which endorsed the toughness of intumescent char layer produced. Moreover, the synergistic effect of HNTs, PDMS, and other basic intumescent ingredients enhanced the polymer cross-linking in binder system and improved fire resistive performance of coatings.

Topics
  • compound
  • polymer
  • Carbon
  • x-ray diffraction
  • nanotube
  • transmission electron microscopy
  • thermogravimetry
  • decomposition
  • gravimetric analysis