Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lopes, Cristiane Caroline Campos

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Combined experimental–numerical mode I fracture characterization of the pultruded composite barscitations

Places of action

Chart of shared publication
Stabla, Paweł
1 / 1 shared
Lesiuk, Grzegorz
1 / 5 shared
Zielonka, Paweł
1 / 1 shared
Duda, Szymon
1 / 2 shared
Smolnicki, Michał
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Stabla, Paweł
  • Lesiuk, Grzegorz
  • Zielonka, Paweł
  • Duda, Szymon
  • Smolnicki, Michał
OrganizationsLocationPeople

document

Combined experimental–numerical mode I fracture characterization of the pultruded composite bars

  • Stabla, Paweł
  • Lesiuk, Grzegorz
  • Lopes, Cristiane Caroline Campos
  • Zielonka, Paweł
  • Duda, Szymon
  • Smolnicki, Michał
Abstract

n this paper, pultruded GFRP bars are investigated to determine their fracture properties. The double cantilever beam test (DCB) is used to assess fracture behavior under mode I loading conditions. However, due to the presence of the R-curve effect (variable fracture energy dependent on the length of the crack), it is necessary to introduce a nonstandard approach to determine fracture properties. The mixed experimental–numerical approach is proposed to deal with this issue. Numerical simulations were carried out in Simulia Abaqus, and with Python scripting it was possible to generate models and obtain R-curve for the material. The numerical model built based on the experimental results has very good agreement with it (force–displacement and delamination length–time characteristics) which allows the use of the mentioned model in the analysis of more complex structures. Acoustic emission analysis was introduced as an auxiliary technique. The delamination obtained from both the numerical model and the experiment complies with the registered acoustic emission events. The proposed method can be used in preparing a material model for other composite materials, which display the presence of the R-curve effect.

Topics
  • impedance spectroscopy
  • experiment
  • simulation
  • crack
  • composite
  • acoustic emission
  • fracture behavior