People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gargarella, Piter
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Metal powder as feedstock for laser-based additive manufacturing: From production to powder modificationcitations
- 2023Effect of scanning strategy on microstructure and mechanical properties of a biocompatible Ti–35Nb–7Zr–5Ta alloy processed by laser-powder bed fusioncitations
- 2023Advanced characterization of bulk alloy and in-situ debris nanoparticles formed during wear of Fe–Nb–B ultrafine eutectic laser cladding coatings
- 2023Metal powder as feedstock for laser-based additive manufacturing: From production to powder modification
- 2022Effect of scanning strategy on microstructure and mechanical properties of a biocompatible Ti–35Nb–7Zr–5Ta alloy processed by laser-powder bed fusion
- 2022Effect of scanning strategy on microstructure and mechanical properties of a biocompatible Ti–35Nb–7Zr–5Ta alloy processed by laser-powder bed fusion
- 2022Effect of rotational speed and double-sided welding in friction stir–welded dissimilar joints of aluminum alloy and steelcitations
- 2022Laser remelting of AlSi10Mg(-Ni) alloy surfaces: influence of Ni content and cooling rate on the microstructure
- 2021Effect of the gap width in AZ31 magnesium alloy joints obtained by friction stir weldingcitations
- 2020Characterization of dissimilar friction stir welded lap joints of AA5083 and GL D36 steelcitations
- 2020Processing a biocompatible Ti-35Nb-7Zr-5Ta alloy by selective laser meltingcitations
- 2019Selective laser melting of Cu-based shape memory alloys
- 2018Microstructural characterization of a laser surface remelted Cu-based shape memory alloycitations
- 2015Structural evolution in Ti-Cu-Ni metallic glasses during heating
- 2015Phase formation, thermal stability and mechanical properties of a Cu-Al-Ni-Mn shape memory alloy prepared by selective laser meltingcitations
- 2015Phase separation in rapid solidified Ag-rich Ag-Cu-Zr alloyscitations
- 2014Phase formation, thermal stability and mechanical behaviour of TiCu-based alloys
Places of action
Organizations | Location | People |
---|
document
Advanced characterization of bulk alloy and in-situ debris nanoparticles formed during wear of Fe–Nb–B ultrafine eutectic laser cladding coatings
Abstract
The microstructure of Fe76·5Nb8·5B15 (at.%) ultrafine eutectic (UE) coatings were processed by laser cladding, then the bulk alloy coating and wear debris were evaluated by advanced electron microscopy techniques in order to understand the ultrafine matrix and nanoscale intermetallic sub-micron and nanoscale phases formed, as a result of rapid solidification. In addition, according to the laser cladding processing parameters used, the coatings presented nanoscale borides that increased mechanical properties, with the coating michohardness values reached being four times higher than those of the AISI mild steel substrate. Combined with the sliding speeds, it played an important role in the definition of different wear mechanisms. The wear performance of the coatings and substrate was evaluated by three-body wear tests using a pin-on-disc device. It can be seen at lowest sliding speed a plastic deformation and for higher slidding speed, an accumulation of debris on the laser clad coating surface. Different wear mechanisms were observed in the coatings samples: abrasive, adhesive, shearing and delamination. The presence of oxide particles, responsible for the formation of a tribofilm, was also observed for some coatings. Debris nanoparticles from 10 to 100 nm, resulting from fracture or breakage of the coatings during wear tests, were also be identified as Fe-based and oxide nanoparticles. Thus, the Fe–Nb–B ultrafine eutectics laser clad coatings showed wear resistance properties comparable to or even superior to commercial alloys and other materials processed by rapid solidification.