People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hezil, Naouel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Effect of Fe content on physical, tribological and photocatalytical properties of Ti-6Al-xFe alloys for biomedical applications
- 2024Investigating the effect of Zr content on electrochemical and tribological properties of newly developed near β-type Ti-alloys (Ti–25Nb-xZr) for biomedical applications ; Untersuchung der Auswirkung des Zr-Gehalts auf die elektrochemischen und tribologischen Eigenschaften neu entwickelter β-naher Ti-Legierungen (Ti-25Nb-xZr) für biomedizinische Anwendungencitations
- 2024Effect of milling time on structural, physical and tribological behavior of a newly developed Ti-Nb-Zr alloy for biomedical applications
- 2023Structural and mechanical evaluation of a new Ti-Nb-Mo alloy produced by high-energy ball milling with variable milling time for biomedical applications
- 2019Effect of Molybdenum Content on Structural, Mechanical, and Tribological Properties of Hot Isostatically Pressed β-Type Titanium Alloys for Orthopedic Applicationscitations
- 2019Enhanced structural and tribological performance of nanostructured Ti-15Nb alloy for biomedical applicationscitations
Places of action
Organizations | Location | People |
---|
document
Structural and mechanical evaluation of a new Ti-Nb-Mo alloy produced by high-energy ball milling with variable milling time for biomedical applications
Abstract
he main focus of this work is to investigate the impact of varying milling times (2 to 18 h) on the structural and mechanical properties of the developed Ti-Nb-Mo alloy. The morphology, phase composition, microstructure, and mechanical behavior of milled and sintered Ti-25Nb-25Mo alloy samples were characterized systematically using x-ray diffraction, scanning electron microscope, optical microscope, and Vicker microhardness. It was noted that the quantity of the β-Ti phase increased as the milling time increased. After 12 h of milling, the synthesized alloys exhibited a spherical morphology and texture with homogeneous distribution. The milled alloys' structural evolution and morphological changes were found to be dependent on their milling duration. Morphological analysis revealed that the crystallite size and mean pore size decreased when the milling duration increased, reaching minimum values of 51 nm and < 1 μm, after 12 and 18 h respectively. As the milling time increased, the grain size decreased, resulting in an increase in density, microhardness, and elastic modulus. Ti-25Nb-25Mo will presents good anti-wear ability and higher resistance to plastic deformation due to enhanced mechanical characteristics (H/E, and H 3 /E 2 ). Hence, the developed Ti-25Nb-25Mo alloys with reduced elastic modulus and desirable mechanical properties were found to be a promising option for biomedical applications.