People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Anwar, Yasir
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2024Development of silver-doped copper oxide and chitosan nanocomposites for enhanced antimicrobial activitiescitations
- 2021Antibacterial Films of Alginate-CoNi-Coated Cellulose Paper Stabilized Co NPs for Dyes and Nitrophenol Degradationcitations
- 2019A highly efficient and multifunctional biomass supporting Ag, Ni, and Cu nanoparticles through wetness impregnation for environmental remediation
Places of action
Organizations | Location | People |
---|
document
A highly efficient and multifunctional biomass supporting Ag, Ni, and Cu nanoparticles through wetness impregnation for environmental remediation
Abstract
lant-based materials are reported to have a wide range of applications in the environmental and biomedical sectors. In this report, we present an economic and environmentally friendly supported turmeric powder (TP) biomass for the support of Ag, Ni and Cu nanoparticles (NPs) designated as Ag@TP, Ni@TP and Cu@TP. The in situ syntheses of the stated NPs were achieved in aqueous medium using NaBH 4 as a reducing agent. The prepared NPs were applied for the degradation of o -nitrophenol (ONP), m -nitrophenol (MNP), p -nitrophenol (PNP), methyl orange (MO), Congo red (CR), rhodamine B (RB) and methylene blue (MB). Initially, Ag@TP, Ni@TP and Cu@TP were screened for the MO dye and antibacterial activity, where Ag@TP displayed the strongest catalytic activity for MO and bactericidal activities as compared to Ni@TP and Cu@TP. The quantity of metal ions adsorbed onto the TP was investigated by atomic absorption spectroscopy. The Ag@TP, Ni@TP and Cu@TP were characterized through X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, thermal gravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDS) and field emission scanning electron microscope (FESEM) analysis.