People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bishnoi, Shashank
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Performance of cementitious systems containing calcined clay in a chloride-rich environment : A review by TC-282 CCLcitations
- 2023Comparative study of mechanical properties of limestone calcined clay cement, ordinary Portland cement, and pozzolana Portland cement
- 2022Durability performance of binary and ternary blended cementitious systems with calcined claycitations
- 2022Multiscale modelling of uniaxial compressive stress-strain behaviour of concrete using analytical homogenisation and damage mechanicscitations
- 2022Report of RILEM TC 267-TRM : improvement and robustness study of lime mortar strength test for assessing reactivity of SCMscitations
- 2022Report of RILEM TC 267-TRM : improvement and robustness study of lime mortar strength test for assessing reactivity of SCMscitations
- 2022Report of RILEM TC 267-TRM phase 2: Optimization and testing of the robustness of the R3 reactivity tests for supplementary cementitious materialscitations
- 2022Report of RILEM TC 267-TRM phase 2: optimization and testing of the robustness of the R3 reactivity tests for supplementary cementitious materialscitations
- 2022Report of RILEM TC 267-TRM phase 2: optimization and testing of the robustness of the R3 reactivity tests for supplementary cementitious materialscitations
- 2022Report of RILEM TC 267—TRM: Improvement and robustness study of lime mortar strength test for assessing reactivity of SCMscitations
- 2021Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL
- 2018Reactivity tests for supplementary cementitious materials RILEM TC 267-TRM phase 1citations
- 2018Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1citations
- 2017Numerical benchmark campaign of cost action tu1404 – microstructural modellingcitations
- 2011Modeling and simulation of cement hydration kinetics and microstructure developmentcitations
Places of action
Organizations | Location | People |
---|
document
Clay calcination technology: state-of-the-art review by the RILEM TC 282-CCL
Abstract
he use of calcined clays as supplementary cementitious materials provides the opportunity to significantly reduce the cement industry's carbon burden; however, use at a global scale requires a deep understanding of the extraction and processing of the clays to be used, which will uncover routes to optimise their reactivity. This will enable increased usage of calcined clays as cement replacements, further improving the sustainability of concretes produced with them. Existing technologies can be adopted to produce calcined clays at an industrial scale in many regions around the world. This paper, produced by RILEM TC 282-CCL on calcined clays as supplementary cementitious materials (working group 2), focuses on the production of calcined clays, presents an overview of clay mining, and assesses the current state of the art in clay calcination technology, covering the most relevant aspects from the clay deposit to the factory gate. The energetics and associated carbon footprint of the calcination process are also discussed, and an outlook on clay calcination is presented, discussing the technological advancements required to fulfil future global demand for this material in sustainable infrastructure development.