People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ali, Salamat
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Recent Advances of Transition Metal Dichalcogenides‐Based Materials for Energy Storage Devices, in View of Monovalent to Divalent Ionscitations
- 2022Recent advancements and future insight of lead-free non-toxic perovskite solar cells for sustainable and clean energy production: A reviewcitations
- 2020Application of Chemically Exfoliated Boron Nitride Nanosheets Doped with Co to Remove Organic Pollutants Rapidly from Textile Water
- 2017Towards efficient and cost-effective inverted hybrid organic solar cells using inorganic semiconductor in the active layer
- 2012Synthesis of ZnO/Al:ZnO nanomaterial: structural and band gap variation in ZnO nanomaterial by Al doping
- 2011The novel and economical way to synthesize CuS nanomaterial of different morphologies by aqueous medium employing microwaves irradiation
Places of action
Organizations | Location | People |
---|
document
Synthesis of ZnO/Al:ZnO nanomaterial: structural and band gap variation in ZnO nanomaterial by Al doping
Abstract
Pure ZnO and Al-doped ZnO nanomaterial have been successfully fabricated using zinc acetate dihydrate in a basic aqueous solution of KOH through solution precipitation method then treated at 600°C in air. The XRD analysis confirms the Wurtzite hexagonal crystal structure of the product with crystallite size in 32–53 nm range. The morphology of the product has been studied under scanning electron microscopy (SEM). The simultaneous differential scanning calorimetry and thermogravimetric analyses were used to investigate thermal decomposition temperature and different phase transitions up to 800°C. The optical properties and variation in band gap of ZnO by Al doping were investigated by ultraviolet–visible spectroscopy.