Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Asrar, Shafaq

  • Google
  • 1
  • 1
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Facile Coating of HAP on Ti6Al4V for Osseointegrationcitations

Places of action

Chart of shared publication
Tufail, Muhammad
1 / 3 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Tufail, Muhammad
OrganizationsLocationPeople

document

Facile Coating of HAP on Ti6Al4V for Osseointegration

  • Tufail, Muhammad
  • Asrar, Shafaq
Abstract

Ti6Al4V alloy is a material with great strength, low-slung modulus, inferior density, and a virtuous blend of mechanical and exceptional corrosion resistance. However, it does not offer good osseointegration and bone development properties. Conversely, hydroxyapatite (HAP) is highly bioactive in nature to bind with the nearby bone tissues when implanted in the host body. In this work, we have extracted HAP from bovine bones by using the thermal decomposition method. This was followed by its deposition onto the Ti6Al4V alloy using the Electrophoretic Deposition (EPD) technique. TiO2 is used as a bond coat layer to increase the adhesion between HAP and Ti6Al4V alloy substrates. The coated samples after sintering exhibited excellent adhesion. This was followed by characterization using Scanning Electron Microscopy (SEM) and Fourier Transformed Infrared Spectroscopy (FTIR). FTIR and SEM confirm the formation of HAP and its presence after the immersion in SBF. Vicker hardness tester confirms the increase in hardness value of coated samples up to 35%. Potentiostat tests were conducted to compare the corrosion rate of both samples. In addition, the particle sizes were also identified by a laser particle analyzer, whereas X-Ray Diffraction (XRD) technique was also used to determine the crystalline phases of alloy and HAP.

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • corrosion
  • scanning electron microscopy
  • x-ray diffraction
  • crystalline phase
  • strength
  • hardness
  • thermal decomposition
  • sintering
  • infrared spectroscopy