People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wali, Mondher
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2024Damage Investigation in PMMA Polymer: Experimental and Phase-Field Approaches
- 2017Influence of elastic wave on crack nucleation – Experimental and computational investigation of brittle fracturecitations
- 2016Fatigue Behavior of Short Glass Fiber Reinforced Polyamide 66: Experimental Study and Fatigue Damage Modelling
Places of action
Organizations | Location | People |
---|
document
Fatigue Behavior of Short Glass Fiber Reinforced Polyamide 66: Experimental Study and Fatigue Damage Modelling
Abstract
The aim of the present paper is to study and model the fatigue behavior of short glass fibers reinforced polyamide-66. The effect of fiber content on the fatigue and static behavior of this composite is investigated. In such composites fatigue damage growth exhibits three stages. A continuum damage based model is presented to predict damage evolution during these three stages. Experimental results show that increasing the fiber content increases the elastic modulus and the tensile strength of the studied materials under tensile tests. However, the rupture behavior changes from ductile to brittle. Moreover increasing the fiber percentage changes the S-N curves slope and decreases the fatigue life. Analytical results predicted by the proposed model, compared to experimental ones shows good agreement and the developed model predicted fatigue damage growth in its three stages of evolution with good performance.