People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wan Ibrahim, Mohd Haziman
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2021Evaluation on the rheological and mechanical properties of concrete incorporating eggshell with tire powdercitations
- 2020INFLUENCE OF PALM OIL BIOMASS CLINKER AND EMPTY FRUIT BUNCH FIBERS ON CONCRETE PROPERTIES
- 2020Failure behavior of sandwich honeycomb composite beam containing crack at the skin.citations
- 2019Coal bottom ash as a sustainable supplementary cementitious material for the concrete exposed to seawatercitations
- 2019Effects of Grinding Process on the Properties of the Coal Bottom Ash and Cement Pastecitations
- 2019Performances of concrete containing coal bottom ash with different fineness as a supplementary cementitious material exposed to seawatercitations
- 2019Carbonation of concrete containing mussel (Perna Viridis) shell ashcitations
- 2019Short-term effects of sulphate and chloride on the concrete containing coal bottom ash as supplementary cementitious materialcitations
- 2019Recycling of Coal Ash in Concrete as a Partial Cementitious Resourcecitations
- 2018An Utilization of Palm Fuel Ash (POFA) and Ceramic Waste as Cement Materials Replacement in Concrete Productioncitations
- 2018Evaluate the expressions of compression strength and UPV relationshipcitations
- 2018Influence of ground coal bottom ash on the properties of concretecitations
- 2017Crack classification in concrete beams using AE parameterscitations
- 2017A review on seashells ash as partial cement replacementcitations
- 2017A Review: The Effect of Grinded Coal Bottom Ash on Concretecitations
- 2017The durability of concrete containing recycled tyres as a partial replacement of fine aggregatecitations
- 2016Fresh properties and flexural strength of self-compacting concrete integrating coal bottom ashcitations
- 2014Effect of Rice Husk Ash Fineness on the Properties of Concretecitations
- 2014Strength and microstructure analysis of concrete containing rice husk ash under seawater attack by wetting and drying cyclescitations
- 2014The effect of bottom ash on fresh characteristic, compressive strength and water absorption of self-compacting concretecitations
- 2014Compressive and Flexural Strength of Foamed Concrete Containing Polyolefin Fiberscitations
- 2011Strength and permeability properties of concrete containing rice husk ash with different grinding timecitations
Places of action
Organizations | Location | People |
---|
document
INFLUENCE OF PALM OIL BIOMASS CLINKER AND EMPTY FRUIT BUNCH FIBERS ON CONCRETE PROPERTIES
Abstract
This study aims to evaluate the influence of palm oil empty fruit bunch (EFB) fibers on flexural strength performance of concrete in the presence of palm oil biomass clinker (POBC). This study considered various proportions of palm oil EFB fibers as 0%, 0.2%, 0.4%, and 0.6% in concrete with fixed amount of POBC as 10%. It was investigated that there is substantial influence of palm oil EFB fibers on properties of concrete containing 10% POBC as sand replacement. The experimental findings of this study indicated that the workability of fresh mix concrete decreases as palm oil EFB fiber content increased. Besides that, hardened properties of concrete were found to be improved as the amount of palm oil EFB fibers increased in the concrete. It was noticed that flexural strength was improved with addition of 0.2% palm oil EFB fibers that act as reinforcement and deliver growth in flexural strength for concrete containing 10% of POBC. Hence, it was concluded that palm oil EFB fiber could be utilized as fiber reinforcement in concrete to improve flexural strength performance of the concrete. ABSTRAK: Kajian ini bertujuan mengkaji pengaruh gentian tandan kelapa sawit (EFB) terhadap kekuatan lentur pada konkrit dengan kehadiran klinker minyak kelapa sawit biomas (POBC). Kajian ini mengguna pakai pelbagai peratus serat EFB kelapa sawit dalam konkrit iaitu sebanyak 0%, 0.2%, 0.4%, dan 0.6% dengan jumlah tetap POBC sebanyak 10%. Didapati bahawa gentian tandan kelapa sawit EFB yang mengandungi 10% POBC berpengaruh besar sebagai pengganti pasir dalam bahan konkrit. Penemuan eksperimen menunjukkan bahawa kebolehkerjaan campuran baru konkrit berkurangan apabila kandungan gentian EFB minyak sawit meningkat. Selain itu, sifat-sifat mengeras pada konkrit didapati bertambah baik apabila jumlah gentian EFB minyak sawit meningkat dalam konkrit. Di samping itu, kekuatan lenturan meningkat dengan penambahan sebanyak 0.2% serat EFB minyak kelapa sawit, berfungsi sebagai penguat dan penambah kekuatan lenturan pada konkrit yang mengandung 10% POBC. Oleh itu, serat EFB minyak kelapa sawit boleh digunakan sebagai penguat gentian dalam konkrit bagi meningkatkan kekuatan lenturan konkrit. This study aims to evaluate the influence of palm oil empty fruit bunch (EFB) fibers on flexural strength performance of concrete in the presence of palm oil biomass clinker (POBC). This study considered various proportions of palm oil EFB fibers as 0%, 0.2%, 0.4%, and 0.6% in concrete with fixed...