People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ali, Muhammad Mahmood
Atlantic Technological University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Optimizing Friction Stir Processing Parameters for Aluminium Alloy 2024 Reinforced with SiC Particles: A Taguchi Approach of Investigation
- 2024Mitigation of bio-corrosion characteristics of coronary artery stent by optimising fs-laser micromachining parameters
- 2024Mitigation of bio-corrosion characteristics of coronary artery stent by optimising fs-laser micromachining parameters
- 2023Lithium-based perovskites materials for photovoltaic solar cell and protective rays window applications: a first-principle calculations
- 2023Lithium-based perovskites materials for photovoltaic solar cell and protective rays window applications: a first-principle calculationscitations
- 2023Fabrication and characterizations of ultra-sensitive capacitive/resistive humidity sensor based on CNT-epoxy nanocompositescitations
- 2023Investigation of structural, electronic, mechanical, & optical characteristics of Ra based-cubic hydrides RbRaX3 (X= F and cl) perovskite materials for solar cell applicationscitations
- 2023A novel composite connecting rodcitations
- 2023A novel composite connecting rod: study on mechanical and dynamic behaviour through experimental and finite element approach
- 2023Investigation of structural, electronic, mechanical, & optical characteristics of Ra based-cubic hydrides RbRaX3 (X= F and cl) perovskite materials for solar cell applications: First principle study
- 2022On the application of Vickers micro hardness testing to isotactic polypropylenecitations
- 2022Effects of tin particles addition on structural and mechanical properties of eutectic Sn–58Bi solder jointcitations
- 2022Effect of laser processing parameters and carbon black on morphological and mechanical properties of welded polypropylenecitations
- 2021A comprehensive assessment of laser welding of biomedical devices and implant materialscitations
- 2021Laser transmission welding of semi-crystalline polymers and their compositescitations
- 2020Phase engineering with all-dielectric metasurfaces for focused-optical-vortex (fov) beams with high cross-polarization efficiencycitations
- 2020Spherical glass based fiber optic fabry-perot interferometric probe for refractive index sensing
- 2020Current research and development status of dissimilar materials laser welding of titanium and its alloyscitations
- 2015Wide-range in-fibre Fabry-Perot resonator for ultrasonic sensingcitations
- 2015Tilted Fiber Bragg Grating Sensors for Reinforcement Corrosion Measurement in Marine Concrete Structurecitations
- 2014Temperature gradient sensor based on CNT compositecitations
Places of action
Organizations | Location | People |
---|
document
Optimizing Friction Stir Processing Parameters for Aluminium Alloy 2024 Reinforced with SiC Particles: A Taguchi Approach of Investigation
Abstract
The present investigation focuses on the microstructural behavior and mechanical properties of Aluminium alloy 2024 reinforced with SiC nanoparticles by applying the Friction Stir Processing (FSP) technique. Taguchi L9 orthogonal array was used to find the optimal process parameters. The experiment used the expected best process parameters, which confirmed the predicted highest value for the mechanical characteristic. Traverse speed, axial load, and rotating speed are the main factors affecting aluminum metal matrix composite. Hence, this experiment examined the effects of five different tool spinning speeds, specifically 800, 900, 1000, 1100, and 1200 rpm. Weld samples are fabricated wherein the stir zone contains SiC nanoparticles. The results of the study indicate that the optimal welding rotational speed of 1000 rpm has a significant impact on the microstructure, wear rate, and microhardness. Specifically, it was observed that the stirred zone exhibited enhanced wear resistance compared to other zones. The study's findings revealed that after implementing friction stir processing (FSP), a well-defined shear zone was observed on the advancing side of the stir zone. Additionally, it is found that the uniform dispersion and strong bonding of SiC particles with an aluminium matrix further enhance wear resistance.