People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Younesi, Reza
Uppsala University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2022Importance of Superstructure in Stabilizing Oxygen Redox in P3-Na0.67Li0.2Mn0.8O2citations
- 2022Concentrated LiFSI-Ethylene Carbonate Electrolytes and Their Compatibility with High-Capacity and High-Voltage Electrodescitations
- 2022Importance of superstructure in stabilizing oxygen redox in P3- Na0.67Li0.2Mn0.8O2citations
- 2022Importance of superstructure in stabilizing oxygen redox in P3- Na 0.67 Li 0.2 Mn 0.8 O 2citations
- 2021On the Manganese Dissolution Process from LiMn2O4 Cathode Materialscitations
- 2021Vacancy enhanced oxygen redox reversibility in P3-type magnesium doped sodium manganese oxide Na0.67Mg0.2Mn0.8O2citations
- 2021Prospects for Improved Magnesocene-Based Magnesium Battery Electrolytescitations
- 2021Importance of superstructure in stabilizing oxygen redox in P3- Na0.67Li0.2Mn0.8O2citations
- 2020Vacancy enhanced oxygen redox reversibility in P3-type magnesium doped sodium manganese oxide Na 0.67 Mg 0.2 Mn 0.8 O 2citations
- 2020Vacancy enhanced oxygen redox reversibility in P3-type magnesium doped sodium manganese oxide Na0.67Mg0.2Mn0.8O2citations
- 2020How Mn/Ni Ordering Controls Electrochemical Performance in High-Voltage Spinel LiNi0.44Mn1.56O4 with Fixed Oxygen Contentcitations
- 2020How Mn/Ni Ordering Controls Electrochemical Performance in High-Voltage Spinel LiNi0.44Mn1.56O4with Fixed Oxygen Contentcitations
- 2020How Mn/Ni Ordering Controls Electrochemical Performance in High-Voltage Spinel LiNi 0.44 Mn 1.56 O 4 with Fixed Oxygen Contentcitations
- 2020Acetonitrile‐Based Electrolytes for Rechargeable Zinc Batteriescitations
- 2019Towards room temperature operation of all-solid-state Na-ion batteries through polyester-polycarbonate-based polymer electrolytescitations
- 2017Electrochemical performance and interfacial properties of Li-metal in lithium bis(fluorosulfonyl)imide based electrolytescitations
- 2017Simple and Green Method for Fabricating V2O5·nH2O Nanosheets for Lithium Battery Application
- 2015Plasma properties during magnetron sputtering of lithium phosphorous oxynitride thin filmscitations
- 2015Capillary based Li-air batteries for in situ synchrotron X-ray powder diffraction studiescitations
- 2014Ionic conductivity and the formation of cubic CaH 2 in the LiBH 4 -Ca(BH 4 ) 2 compositecitations
- 2014Ionic conductivity and the formation of cubic CaH2 in the LiBH4-Ca(BH4)2 compositecitations
- 2014In Situ Synchrotron XRD on a Capillary Li-O2 Battery Cell
Places of action
Organizations | Location | People |
---|
document
Acetonitrile‐Based Electrolytes for Rechargeable Zinc Batteries
Abstract
Herein, Zn plating–stripping onto metallic Zn using a couple of acetonitrile (AN)‐based electrolytes (0.5 m Zn(TFSI) 2 /AN and 0.5 m Zn(CF 3 SO 3 ) 2 /AN) is studied. Both electrolytes show a reversible Zn plating/stripping over 1000 cycles at different applied current densities varying from 1.25 to 10 mA cm −2 . The overpotentials of Zn plating–stripping over 500 cycles at constant current of 1.25 and 10 mA cm −2 are ±0.05 and ±0.2 V, respectively. X‐ray photoelectron spectroscopy analysis reveals that no decomposition product is formed on the Zn surface. The anodic stability of four different current collectors of aluminum foil (Al), carbon‐coated aluminum foil (C/Al), TiN‐coated titanium foil (TiN/Ti), and multiwalled carbon nanotube paper (MWCNT‐paper) is tested in both electrolytes. As a general trend, the current collectors have a higher anodic stability in Zn(TFSI) 2 /AN compared with Zn(CF 3 SO 3 ) 2 /AN. The Al foil displays the highest anodic stability of ≈2.25 V versus Zn 2+ /Zn in Zn(TFSI) 2 /AN electrolyte. The TiN/Ti shows a comparable anodic stability with that of Al foil, but its anodic current density is higher than Al. The promising reversibility of the Zn plating/stripping combined with the anodic stability of Al and TiN/Ti current collectors paves the way for establishing highly reversible Zn‐ion batteries.