Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yaqoob, Zahida

  • Google
  • 2
  • 9
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Potential Magnetic Drug Targeting with Magnetite Nanoparticles in Cancer Treatment by Enhancer-Modifier Natural Herb and Loaded Drugcitations
  • 2023Characterization and medicinal applications of Karakoram shilajit; angiogenesis activity, antibacterial properties and cytotoxicity3citations

Places of action

Chart of shared publication
Manzur, Jawad
1 / 3 shared
Vayalpurayil, Thafasalijyas
1 / 1 shared
Batool, Syeda Ammara
2 / 6 shared
Waqar, Mehwish
1 / 1 shared
Abbas, Mohamed
2 / 4 shared
Raza, Mohsin Ali
1 / 4 shared
Alqahtani, Mohammed S.
1 / 5 shared
Hussain, Rabia
1 / 2 shared
Almubarak, Hassan Ali
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Manzur, Jawad
  • Vayalpurayil, Thafasalijyas
  • Batool, Syeda Ammara
  • Waqar, Mehwish
  • Abbas, Mohamed
  • Raza, Mohsin Ali
  • Alqahtani, Mohammed S.
  • Hussain, Rabia
  • Almubarak, Hassan Ali
OrganizationsLocationPeople

document

Potential Magnetic Drug Targeting with Magnetite Nanoparticles in Cancer Treatment by Enhancer-Modifier Natural Herb and Loaded Drug

  • Manzur, Jawad
  • Vayalpurayil, Thafasalijyas
  • Batool, Syeda Ammara
  • Waqar, Mehwish
  • Yaqoob, Zahida
  • Abbas, Mohamed
Abstract

In the present study, we prepared magnetite nanoparticles (MNPs) loaded with natural Moringa oleifera (M. olf) herb and Epilim (Ep) drug to evaluate the anti-cancerous activity against brain cancer cells. All the samples were prepared via co-precipitation approach modified with different concentrations of M. olf and Ep drug at room temperature. The MNPs loaded with drug and natural herb were studied in terms of crystal structures, morphologies, colloidal stability, size distribution, and magnetic properties. Field emission scanning electron microscopy (FESEM) exhibited the morphologies of samples with spherical shape as well as the particles size of 9 nm for MNPs and up to 23 nm for its composites. The results of vibrating sample magnetometer (VSM) indicated the magnetization saturation (Ms) of 42.510 emu/g for MNPs. This value reduced to 16-35 emu/g upon loading MNPs with different concentrations of M. olf and Ep. Fourier transform infrared spectroscopy (FTIR) indicated the chemical interaction between the Ep, M.olf and MNPs. Brunauer-Emmett-Teller (BET) analysis confirmed the largest surface area for MNPs (422.61 m2/g) which gradually reduced on addition of M. olf and Ep indicating the successful loading. The zeta potential measurements indicated that the MNPs and MNPs loaded with M. olf and Ep are negatively charged and easily disperse in the suspension. Furthermore, U87 human glioblastoma cell line was used for the in vitro cellular studies to determine the efficacy of synthesized MNPs against cancer cells. The results confirmed the anti-proliferative activity of the MNPs loaded with M. olf and Ep.

Topics
  • nanoparticle
  • surface
  • scanning electron microscopy
  • composite
  • mass spectrometry
  • precipitation
  • Fourier transform infrared spectroscopy
  • magnetization