Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Islam, Shaima

  • Google
  • 2
  • 6
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Effect of cotton‐polyester composite yarn on the physico‐mechanical and comfort properties of woven fabriccitations
  • 2024Effect of cotton-polyester composite yarn on the physico-mechanical and comfort properties of woven fabric10citations

Places of action

Chart of shared publication
Pranta, Arnob Dhar
2 / 3 shared
Repon, Md. Reazuddin
2 / 12 shared
Akter, Nasreen
1 / 1 shared
Malik, Abdul
1 / 2 shared
Khan, Azmat Ali
1 / 1 shared
Akter, Nasrin
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Pranta, Arnob Dhar
  • Repon, Md. Reazuddin
  • Akter, Nasreen
  • Malik, Abdul
  • Khan, Azmat Ali
  • Akter, Nasrin
OrganizationsLocationPeople

document

Effect of cotton‐polyester composite yarn on the physico‐mechanical and comfort properties of woven fabric

  • Pranta, Arnob Dhar
  • Repon, Md. Reazuddin
  • Islam, Shaima
  • Akter, Nasreen
Abstract

otton is the most widely used natural cellulosic polymer and polyester is a synthetic polymer. The use of polyester fiber is increasing gradually day by day due to its strength and longevity, while the use of cotton fiber is decreasing due to its unavailability. At present, the use of cotton‐polyester composites is ubiquitous. This research work aims to assess the physical, mechanical and comfort properties of the woven fabric using cotton‐polyester composite yarns in a weft direction and coarser yarn count because of the use of these fabrics in the future for the denim manufacturing process. Four different samples were fabricated by using 100% cotton (10 Ne) yarn in the warp direction and 100% cotton, cotton‐polyester composite, and 100% polyester yarn in the weft direction of the fabric. Similar fabric and machine parameters were maintained for manufacturing all the samples. The samples were then tested for areal density, tensile strength, thickness, abrasion resistance and pilling, drape, flexural rigidity, and air permeability to find the optimum capability of the fabric. Physico‐mechanical properties with the proportion of increasing polyester components in fabrics improves areal density (184 to 199 g/m 2 ), strength (almost 19 times in weft direction), drape (0.655% to 0.789%), and flexural rigidity (almost double). On the other hand, increasing comfortability properties with the proportion of cotton components in fabrics improve air permeability (139.85 to 159.58 cc/s/cm 2 ), abrasion (only 3.036% mass loss), and pilling resistance (grading 4 after 2000 cycles). Highlights Composite yarns made of cotton and polyester provide a method of improving fabric properties for better performance. Higher proportions of cotton make clothes more breathable and less likely to pill and wear out. Polyester parts make fabrics stronger, more durable, and less likely to wear out. Cotton‐polyester composites are ideal and have potential for various textile applications. Blending natural and synthetic fibers composite allows for customized fabrics that meet specific performance needs without compromising comfort.

Topics
  • density
  • impedance spectroscopy
  • polymer
  • laser emission spectroscopy
  • strength
  • composite
  • permeability
  • tensile strength
  • woven