Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Awalluddin, Dinie

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Mechanical properties of different bamboo speciescitations

Places of action

Chart of shared publication
Lim, Nor Hasanah Abdul Shukor
1 / 3 shared
Ismail, Mohamed A.
1 / 8 shared
Abu-Husin, Mohd Fauzi
1 / 2 shared
Osman, Muhammad Khusairi
1 / 1 shared
Ariffin, Mohd Azreen Mohd
1 / 5 shared
Lee, Han-Seung
1 / 9 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Lim, Nor Hasanah Abdul Shukor
  • Ismail, Mohamed A.
  • Abu-Husin, Mohd Fauzi
  • Osman, Muhammad Khusairi
  • Ariffin, Mohd Azreen Mohd
  • Lee, Han-Seung
OrganizationsLocationPeople

document

Mechanical properties of different bamboo species

  • Lim, Nor Hasanah Abdul Shukor
  • Ismail, Mohamed A.
  • Abu-Husin, Mohd Fauzi
  • Awalluddin, Dinie
  • Osman, Muhammad Khusairi
  • Ariffin, Mohd Azreen Mohd
  • Lee, Han-Seung
Abstract

Bamboo is a rapid renewable plant that has a fast growth rate as compared to trees, which increases its suitability to be used as a sustainable source for wood industry, especially in construction works. Due to the lack of understanding on bamboo properties, the utilization of bamboo in construction has always been neglected. This paper presents an investigation on the mechanical properties of four species of treated bamboos that are available in Malaysia, which include Bambusa Vulgaris, Dendrocalamus Asper, Schizostachyum Grande, and Gigantochloa Scortechinii. A mechanical testing was carried out in various parts along the culm of these bamboo species in order to examine the differences of their compressive strength and tensile strength. The strength development and moisture content of these bamboo species were also monitored at a five-month interval. The results showed that Bambusa Vulgaris, Dendrocalamus Asper, and Gigantochloa Scortechinii possess excellent mechanical properties in compression and tensile strength, which indicate a good quality to be used as a construction material. As bamboo offers promising advantages, thus, it is suitable to be used as a substitute in place of structural timber in construction, which indirectly facilitates the preservation of the global environment.

Topics
  • impedance spectroscopy
  • strength
  • tensile strength
  • wood