Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pervaiz, Dr Muhammad

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Antimicrobial attributes and enhanced catalytic potential of PVA stabilized Ag-NiO2 nanocomposite for wastewater treatmentcitations

Places of action

Chart of shared publication
Ashraf, Dr. Adnan
1 / 1 shared
Saeed, Zohaib
1 / 1 shared
Iqbal, Ayousha
1 / 1 shared
Nazir, Arif
1 / 7 shared
Saleem, Aimon
1 / 1 shared
Ali, Faisal
1 / 3 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Ashraf, Dr. Adnan
  • Saeed, Zohaib
  • Iqbal, Ayousha
  • Nazir, Arif
  • Saleem, Aimon
  • Ali, Faisal
OrganizationsLocationPeople

document

Antimicrobial attributes and enhanced catalytic potential of PVA stabilized Ag-NiO2 nanocomposite for wastewater treatment

  • Ashraf, Dr. Adnan
  • Saeed, Zohaib
  • Iqbal, Ayousha
  • Nazir, Arif
  • Pervaiz, Dr Muhammad
  • Saleem, Aimon
  • Ali, Faisal
Abstract

Dyes are well known major pollutants in wastewater discharged by various textile industries which are toxic to human beings and aquatic life. It is necessary to remove these colorants from water with low-cost yet effective method by which these pollutants can be removed from the water bodies. Current study has been designed to develop cost-effective material for the removal of dyes in wastewater along with the application of composite to inhibit the growth of Gram negative (GN) and Gram positive (GP) bacterium. Nanocomposite (Ag-NiO2@PVA) of silver and nickel was synthesized by the chemical reduction method and polyvinyl alcohol (PVA) was used as a stabilizing medium. Nanocomposite (NC) was characterized employing different techniques including XRD, SEM, DLS, and FTIR which not only confirmed its synthesis but also provided their structure and morphology. The hexagonal close packed nanocomposite was tested for the catalytic degradation of different azo and anthraquinone dyes including methylene blue (MB), methyl orange (MO) and eosin yellow (EY). The degradation of MO, MB and EY was recorded in 20, 16 and 20 min with percentage removal 89.26, 95.88 and 96.56% respectively. Antibacterial potential of the nanocomposite was assessed against different GN and GP bacterial strains namely Bacillus subtilis, Staphylococcus aureus and Escherichia coli and the as-synthesized Ag-NiO2@PVA exhibited strong zone of inhibition against all types of bacterial strains mentioned herein. Nanocomposite was recovered and analyzed after dye degradation as well as the antibacterial studies have confirmed stability and recyclability of the nanocomposite. Results of the current study strongly recommend the composite for wastewater treatment applications i.e. removal of different dyes and pathogens. Silver and nickel based nanocomposite can be synthesized as well as modified followed by stabilizing with PVA for different applications in material sciences.

Topics
  • nanocomposite
  • impedance spectroscopy
  • morphology
  • nickel
  • silver
  • scanning electron microscopy
  • x-ray diffraction
  • alcohol
  • dynamic light scattering