People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jamir, Mohd Ridzuan Mohd
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Complex Impedance and Modulus Analysis on Porous and Non-Porous Scaffold Composites Due to Effect of Hydroxyapatite/Starch Proportioncitations
- 2022Damage self-sensing and strain monitoring of glass-reinforced epoxy composite impregnated with graphene nanoplatelet and multiwalled carbon nanotubes
- 2021Compressive strength, sound absorption coefficient (SAC) and water absorption analysis of HDPE plastic waste reinforced polystyrene and Portland cement for lightweight concrete (LWC)citations
- 2021Bending strength analysis of HDPE plastic reinforced wood waste and thermoplastic polymer to replace ceramic tile compositescitations
Places of action
Organizations | Location | People |
---|
document
Damage self-sensing and strain monitoring of glass-reinforced epoxy composite impregnated with graphene nanoplatelet and multiwalled carbon nanotubes
Abstract
he damage self-sensing and strain monitoring of glass-reinforced epoxy composites impregnated with graphene nanoplatelets (GNPs) and multiwalled carbon nanotubes (MWCNTs) were investigated. Hand lay-up and vacuum bagging methods were used to fabricate the composite. Mechanical stirrer, high shear mixer, and ultrasonic probe were used to mix the nanofiller and epoxy. The loadings of the nanofiller used were 0.5, 1.5, 3, and 5 wt%. The specimens were tested using in situ electromechanical measurements under mechanical tests. The results show that the type and weight content of the nanofiller affect the electrical properties, damage self-sensing behaviour, and mechanical properties of the composites. The electrical conductivity of the GNP-glass and MWCNT-glass composites increased with nanofiller content. The tensile and flexural strengths of the composite improved with the addition of GNP and MWCNT nanofillers from 0.5 to 3 wt%. The 3 wt% nanofiller loading for GNP and MWCNT produces better mechanical–electrical performance. Field emission scanning electron microscopy revealed the dispersion of GNP and MWCNT nanofillers in the composites.