People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reinoso, Deborath Mariana
Asur Plant Breeding (France)
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
document
Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid
Abstract
Despite the progress made in Li-ion battery components, technology still faces major challenges. Among them, the development of novel electrolytes with promising characteristics is required for next-generation energy storage devices. In this work, rigid hybrid electrolytes have been prepared by infiltration of an ionic liquid solution (Pyr14TFSI) with a lithium salt (LiTFSI) into a sintered LATP ion-conducting porous ceramic. The porous ceramic 3D network was obtained via solid-state sintering of LATP powders mixed with a small amount of corn starch as pore former. A synergetic effect between the ionic liquid and support was evidenced. The resultant quasi-solid-state hybrid electrolytes exhibit high ionic conductivity (∼10–3 S·cm–1 at 303 K), improved ion transfer number, tLi+, and a wide electrochemical window of 4.7–4.9 V vs Li+/Li. The LATP porosity plays a critical role in the free Li+ charge because it favors higher TFSI– confinement in the ceramic interfaces, which consequently positively influences tLi+ and ionic conductivity. Electrochemical tests conducted at room temperature for Li/LiFePO4 cells using the hybrid electrolyte exhibited a high capacity of 150 mAh·g–1LFP at C/30, and still retained 60 mAh·g–1 LFP at 1 C, while bare LATP does not perform well at low temperatures. These findings highlight this hybrid electrolyte as a superior alternative to the ceramic LATP electrolyte and a safer option compared with conventional organic electrolytes.