Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Torre, Carmen De La

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquidcitations

Places of action

Chart of shared publication
Reinoso, Deborath Mariana
1 / 2 shared
Varez, Alejandro
1 / 13 shared
Fernández-Ropero, Antonio J.
1 / 1 shared
Levenfeld, Belen
1 / 5 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Reinoso, Deborath Mariana
  • Varez, Alejandro
  • Fernández-Ropero, Antonio J.
  • Levenfeld, Belen
OrganizationsLocationPeople

document

Advancements in Quasi-Solid-State Li Batteries: A Rigid Hybrid Electrolyte Using LATP Porous Ceramic Membrane and Infiltrated Ionic Liquid

  • Torre, Carmen De La
  • Reinoso, Deborath Mariana
  • Varez, Alejandro
  • Fernández-Ropero, Antonio J.
  • Levenfeld, Belen
Abstract

Despite the progress made in Li-ion battery components, technology still faces major challenges. Among them, the development of novel electrolytes with promising characteristics is required for next-generation energy storage devices. In this work, rigid hybrid electrolytes have been prepared by infiltration of an ionic liquid solution (Pyr14TFSI) with a lithium salt (LiTFSI) into a sintered LATP ion-conducting porous ceramic. The porous ceramic 3D network was obtained via solid-state sintering of LATP powders mixed with a small amount of corn starch as pore former. A synergetic effect between the ionic liquid and support was evidenced. The resultant quasi-solid-state hybrid electrolytes exhibit high ionic conductivity (∼10–3 S·cm–1 at 303 K), improved ion transfer number, tLi+, and a wide electrochemical window of 4.7–4.9 V vs Li+/Li. The LATP porosity plays a critical role in the free Li+ charge because it favors higher TFSI– confinement in the ceramic interfaces, which consequently positively influences tLi+ and ionic conductivity. Electrochemical tests conducted at room temperature for Li/LiFePO4 cells using the hybrid electrolyte exhibited a high capacity of 150 mAh·g–1LFP at C/30, and still retained 60 mAh·g–1 LFP at 1 C, while bare LATP does not perform well at low temperatures. These findings highlight this hybrid electrolyte as a superior alternative to the ceramic LATP electrolyte and a safer option compared with conventional organic electrolytes.

Topics
  • porous
  • impedance spectroscopy
  • pore
  • Lithium
  • porosity
  • ceramic
  • sintering