People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Barceló, Francisco
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
document
Crack formation in chill block melt spinning solidification process: a comparative analysis using OpenFOAM®
Abstract
he application of FeSiB family magnetic materials in electrical or electronic industry has significantly increased owing to the development of amorphous and nanocrystalline metallic glasses using melt spinning and chill block melt spinning technology that involves a rotating metal wheel with a high rotation speed. With this technique, a thin ribbon is obtained owing to the jet of liquid metal that is expelled from a casting nozzle at high pressure and temperature over the outer surface of the wheel. The cooling rates that can be achieved lead to disorder in the crystalline lattice of the metal, which is dependent on the chemical composition. As soon as the material jet is expelled by the nozzle, turbulence can occur in the solidification puddles. This generates defects and cracks in the solidification profile. In this study, numerically simulated Ad Hoc events in OPENFOAM® are comparatively examined using a real process.