Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mohammed, Osama A.

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Efficient drug delivery potential and antimicrobial activity of biocompatible hydrogels of dextrin/Na-alginate/PVAcitations

Places of action

Chart of shared publication
Iqbal, Dr. Dure Najaf
1 / 2 shared
Zafar, Kinza
1 / 1 shared
Kamal, Abida
1 / 1 shared
Nazir, Arif
1 / 7 shared
Kainat, Faiza
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Iqbal, Dr. Dure Najaf
  • Zafar, Kinza
  • Kamal, Abida
  • Nazir, Arif
  • Kainat, Faiza
OrganizationsLocationPeople

document

Efficient drug delivery potential and antimicrobial activity of biocompatible hydrogels of dextrin/Na-alginate/PVA

  • Iqbal, Dr. Dure Najaf
  • Zafar, Kinza
  • Kamal, Abida
  • Nazir, Arif
  • Kainat, Faiza
  • Mohammed, Osama A.
Abstract

eftriaxone sodium belongs to the third-generation cephalosporin group and is used intramuscular and intravenous route as a broad-spectrum antibiotic. This research aims to prepare biocompatible hydrogels for targeted delivery of ceftriaxone sodium by parental route. Different proportions of polymers (natural and synthetic) in the presence of cross-linker were synthesized by solvent casting method. Ceftriaxone sodium was loaded in hydrogels in different concentrations and its drug release behavior was evaluated along with swelling and biodegradation analysis. The characterization of hydrogel was done by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) to analyze surface morphology and functional groups involved in the formation of dextrin/Na-alginate/PVA hydrogels loaded with the drug. Thermogravimetric analysis (TGA) was confirmed by thermal stability and degradation pattern of loaded and unloaded hydrogels. The drug-loaded samples presented promising antimicrobial activity against S. aureus and P. multocida and their cytotoxic nature was also studied. Drug release analysis using simulated intestinal fluid (SIF) and phosphate buffer saline(PBS) for the circulatory system shows the consistent release of the drug. The findings unveiled the development of a biocompatible and innovative hydrogel, which has potential advantages for biomedical application, particularly in enhancing the therapeutic efficacy of ceftriaxone sodium drug.

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • polymer
  • scanning electron microscopy
  • Sodium
  • thermogravimetry
  • solvent casting
  • casting