People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Norkus, Eugenijus
Center for Physical Sciences and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2024The Dependence of NiMo/Cu Catalyst Composition on Its Catalytic Activity in Sodium Borohydride Hydrolysis Reactionscitations
- 2024Hydrogen and Oxygen Evolution on Flexible Catalysts Based on Nickel–Iron Coatings
- 2024Electrolessly Deposited Cobalt–Phosphorus Coatings for Efficient Hydrogen and Oxygen Evolution Reactions
- 2023Investigation of Hydrogen and Oxygen Evolution on Cobalt-Nanoparticles-Supported Graphitic Carbon Nitridecitations
- 2023Three-dimensional Au(NiMo)/Ti catalysts for efficient oxygen evolution reaction
- 2023Black Liquor and Wood Char-Derived Nitrogen-Doped Carbon Materials for Supercapacitorscitations
- 2023Hydrogen production on CoFe, CoFeMn and CoFeMo coatings deposited on Ni foam via electroless metal platingcitations
- 2023Non-Precious Metals Catalysts for Hydrogen Generationcitations
- 2022Three-Dimensional Au(NiMo)/Ti Catalysts for Efficient Hydrogen Evolution Reactioncitations
- 2022Comparison of the Activity of 3D Binary or Ternary Cobalt Coatings for Hydrogen and Oxygen Evolution Reactionscitations
- 2021Terahertz Photoconductivity Spectra of Electrodeposited Thin Bi Filmscitations
- 2021One-Pot Microwave-Assisted Synthesis of Graphene-Supported PtCoM (M = Mn, Ru, Mo) Catalysts for Low-Temperature Fuel Cellscitations
- 2021Synthesis of Carbon-Supported MnO2 Nanocomposites for Supercapacitors Applicationcitations
- 2020Investigation of Glucose Oxidation on Gold Nanocrystallites Modified Cobalt and Cobalt-Boron Coatings
- 2020Carbon supported manganese(IV)–cobalt(II/III) oxides nanoparticles for high-performance electrochemical supercapacitors
- 2020Investigation of stability of gold nanoparticles modified zinc–cobalt coating in an alkaline sodium borohydride solutioncitations
- 2020Investigation of electro-oxidation of glucose at gold nanoparticles/carbon composites prepared in the presence of halide ionscitations
- 2020Hydrogen Generation from an Alkaline NaBH<sub>4</sub> Solution Using Different Cobalt Catalysts
- 2020Laser-Induced Selective Electroless Plating on PC/ABS Polymer: Minimisation of Thermal Effects for Supreme Processing Speedcitations
- 2020Surfactant-assisted microwave synthesis of carbon supported MnO2 nanocomposites and their application for electrochemical supercapacitorscitations
- 2019Investigation of glucose electro-oxidation on Co and CoB alloy coatings modified with Au nanoparticlescitations
- 2019Comparison of electrocatalytic activity for glucose electrooxidation of gold nanoparticles fabricated by different methodscitations
- 2018Percolation effect of a Cu layer on a MWCNT/PP nanocomposite substrate after laser direct structuring and autocatalytic platingcitations
- 2018Wood-Based Carbon Materials Modified with Cobalt Nanoparticles As Catalysts for Oxygen Reduction and Hydrogen Oxidation
- 2016Platinum-Niobium(V) Oxide/Carbon Nanocomposites Prepared By Microwave Synthesis For Ethanol Oxidation
- 2016Comparative Study of Electroless Platinum Deposition Using Multivalent Metal Ions or Hydrazine As Reducing Agents
- 2016Electroless Deposition of Cobalt-Tungsten-Boron Films from Glycine Containing Solutions As Barrier Layer Against Cu Diffusion
- 2016Colour-Difference Measurement Method for Evaluation of Quality of Electrolessly Deposited Copper on Polymer after Laser-Induced Selective Activationcitations
- 2014Investigation of Borohydride Oxidation on Graphene Supported Gold-Copper Nanocomposites
- 2014Electroless Co-B-P-W Deposition Using DMAB as Reducing Agent
Places of action
Organizations | Location | People |
---|
article
Investigation of stability of gold nanoparticles modified zinc–cobalt coating in an alkaline sodium borohydride solution
Abstract
<jats:p>The electrochemical stability and durability of ZnCo alloy thin layers deposited on the titanium surface (denoted as ZnCo/Ti) and those modified by small amounts of Au nanoparticles (denoted as AuZnCo/Ti) prepared via the electrochemical metal deposition technique and a simple galvanic displacement have been investigated in alkaline sodium borohydride (NaBH4) solutions. The physical properties of the fabricated AuZnCo/Ti catalysts have been examined using field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDX) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The electrocatalytic activity of the ZnCo/Ti and AuZnCo/Ti catalysts toward the oxidation of NaBH4 has been evaluated in an alkaline medium using cyclic voltammetry (CV) and chronoamperometry (CA), whereas the catalytic efficiency of the catalysts for the hydrolysis reaction of NaBH4 has been also examined by measuring the amount of generated hydrogen via the classic water-displacement method. It has been determined that the modification of the ZnCo alloy coating by Au nanoparticles apparently improves not only the morphology and structure of the catalyst, but also the activity and stability of the one for the oxidation of NaBH4 in an alkaline medium as compared to those of ZnCo/Ti and bare Au. The AuZnCo/Ti catalysts that have Au loadings of 63 and 306 µg cm–2 give ca. 12 and 11, respectively, times higher NaBH4 oxidation current densities as compared to those of the bare Au catalyst. Moreover, the AuZnCo/Ti catalysts catalyze the hydrolysis reaction of NaBH4 in alkaline solutions.</jats:p>