Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Perić, Tamara

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Enhanced adhesion of acrylic adhesives with dental tissue with the addition of aluminum oxide based particlescitations

Places of action

Chart of shared publication
Gligorijević, Bojan
1 / 4 shared
Mladenović, Ivana
1 / 27 shared
Tomić, Nataša
1 / 8 shared
Vuksanović, Marija
1 / 7 shared
Heinemann, Radmila Jancic
1 / 2 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Gligorijević, Bojan
  • Mladenović, Ivana
  • Tomić, Nataša
  • Vuksanović, Marija
  • Heinemann, Radmila Jancic
OrganizationsLocationPeople

article

Enhanced adhesion of acrylic adhesives with dental tissue with the addition of aluminum oxide based particles

  • Gligorijević, Bojan
  • Mladenović, Ivana
  • Perić, Tamara
  • Tomić, Nataša
  • Vuksanović, Marija
  • Heinemann, Radmila Jancic
Abstract

<jats:p>Composite materials based on acrylate UV-cured polymers (Bis-GMA/TEGDMA) as a matrix and reinforcements that can be selected in order to adjust the properties of the obtained composite are used in the field of dental technology. The role of reinforcement is to adjust the mechanical properties, but also to control the shrinkage during curing. As reinforcement, alumina particles doped with iron oxide (Al2O3 Fe) synthesized using the sol-gel technique were selected. In order to simulate the process of adhesive application in real conditions, in vitro testing technique and adhesion properties of synthesized adhesive were used, where tooth tissue was used as a substrate. Comparison with standard adhesives used in dentistry was used to compare adhesion. The quality of the adhesive joint was evaluated using the microhardness testing method using different loads where it is estimated how the adhesive makes a connection with the substrate. It was shown that the synthesized adhesive showed significantly enhanced adhesion compared to the standard adhesive used in dentistry (836%).</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • aluminum oxide
  • aluminium
  • composite
  • iron
  • curing