Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Selvam, Anirudh

  • Google
  • 4
  • 4
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Statistical modelling and assessment of surface roughness in drilling of hybrid fiber composite5citations
  • 2022Modeling and Analysis of Surface Roughness Parameters in Drilling of Silk-glass/epoxy Composite1citations
  • 2021Python implementation of fuzzy logic for artificial intelligence modelling and analysis of important parameters in drilling of hybrid fiber composite (HFC)4citations
  • 2021Python inspired artificial neural networks modeling in drilling of glass-hemp-flax fiber composites7citations

Places of action

Chart of shared publication
Ramalingam, Vimal Samsingh
1 / 3 shared
Chandran, Arun Prakash
1 / 1 shared
Ramachandran, Achyuth
1 / 2 shared
David, Amos Gamaleal
1 / 1 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Ramalingam, Vimal Samsingh
  • Chandran, Arun Prakash
  • Ramachandran, Achyuth
  • David, Amos Gamaleal
OrganizationsLocationPeople

article

Python inspired artificial neural networks modeling in drilling of glass-hemp-flax fiber composites

  • Selvam, Anirudh
Abstract

As composites are materials whose properties can essentially be customized to suit the necessities of the engineering application on hand, they are being widely used in many applications for radically different purposes. In order to ensure quality in production process of composite products, a solid understanding of the process involved during its manufacturing is essential to ensure the product is free from both internal and external defects. To that aim, a study was conducted to model Thrust force and Torque on drilling of Glass-Hemp-Flax reinforced polymer composite by fabricating and maching the composite as per Taguchi's L 27 Orthogonal Array. The process parameters considered for modeling are drill diameter, spindle speed and feed rate. Using the process control parameters as inputs and thrust force and torque to be predicted as outputs, artificial neural networks (ANNs) were created to model the effects of the inputs and their interactions. The predictions obtained from the neural networks were compared with the values obtained from experimentation. Excellent agreement was found between the two sets of values, establishing grounds for more extensive use of neural networks in modelling of machining parameters.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • glass
  • glass
  • composite
  • defect