People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mesnil, Olivier
Luxembourg Institute of Science and Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024A Hybrid Actuator Model for Efficient Guided Wave-Based Structural Health Monitoring Simulations
- 2023Self-referenced robust guided wave based defect detection: application to woven composite parts of complex shapecitations
- 2023Lead Zirconate Titanate Transducers Embedded in Composite Laminates: The Influence of the Integration Method on Ultrasound Transduction ; Transducteur PZT intégré dans un composite stratifié : influence de la méthode d'intégration sur la transduction ultrasonorecitations
- 2023Lead Zirconate Titanate Transducers Embedded in Composite Laminates: The Influence of the Integration Method on Ultrasound Transductioncitations
- 2023Detection of barely visible impact damage in composite plates using non-linear pump-probe technique
- 2023Experimental and Numerical Study of Lamb Waves Generation Efficiency by Lead Zirconate Titanate Transducers Embedded in a Composite Laminate
- 2022Optimization of a Structural Health Monitoring systems integration in laminated composite cured in autoclavecitations
- 2022Experimental and Numerical Study of Lamb Waves Generation Efficiency by Lead Zirconate Titanate Transducers Embedded in a Composite Laminate
- 2021Damage quantification in an aluminium-CFRP composite structure using guided wave wavenumber mapping : Comparison of instantaneous and local wavenumber analyses
- 2021Characterization of Guided Wave Propagation in Woven Composites of Varying Geometry
- 2021Experimental validation of transient spectral finite element simulation tools dedicated to guided wave based structural health monitoringcitations
- 2019Machine-learning based temperature compensation for Guided Wave Imaging in Structural Health Monitoring
- 2019Defect sizing using convolution neural network applied to guided wave imagingcitations
- 2019Guided wave imaging of a composite plate using passive acquisitons by Fiber Bragg Gratings on optical fibers
- 2018Defect imaging in layered composite plates and honeycomb sandwich structures using sparse piezoelectric transducers networkcitations
- 2018Experimental determination of 3D Green's function in composite plates for defect imaging using guided waves
- 2017Defect imaging on CFRP and honeycomb composite structures by guided waves generated and detected by a sparse PZT arraycitations
- 2016Sparse wavefield reconstruction and source detection using Compressed Sensingwavefield reconstruction and source detection using Compressed Sensingcitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Detection of barely visible impact damage in composite plates using non-linear pump-probe technique
Abstract
International audience ; In the last decades, composite materials have been increasingly used in aircraft structures as a mean to reduce the weight. For safety reasons, periodic checks of impact-induced damage need to be performed. In that framework, ultrasound non destructive testing has proven its ability to detect macro-defects such as delamination. However, at early stages, Barely Visible Impact Damage (BVID) may not be detected via linear ultrasound techniques. In recent years, non-linear ultrasound has gained traction for the inspection of such defects. However, detection of the weak non-linear defect signature buried in ambient noise remains challenging, and depends on an empirical choice of excitation frequencies. This study focuses on the evaluation of a non-linear pump probe ultrasound inspection technique applied to BVID in multilayer carbon fibre reinforced composites used in aeronautics. In particular, the influence of various experimental parameters on the measured non-linear response is studied. A low frequency pump wave (via a shaker) and a high frequency wave (via a piezoelectric transducer) are transmitted to the medium while a second transducer records the ultrasonic response. Both pump and probe waves are sent in the form of a few secondslong frequency sweep, in the audible and ultrasonic range respectively. Appropriate post processing is then applied to the recorded signals to retrieve the non-linear response of the defect. The procedure is repeated on several composite plates with and without impact damages. The nonlinear response appears in the form of modulation sidebands in the frequency spectrum of the post-processed signals. The relative amplitudes of the side bands obtained for the various samples with various defect sizes and excitation amplitude or frequency content are studied. Optimal experimental parameters were obtained and led to a good detection of defects. The limits of the method are also discussed.