People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Köhler, Daniel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024In-situ CT of the clinching process – Influence of settling effects due to process interruptions
- 2023Comparison of ex- and in-situ investigations of clinched single-lap shear specimenscitations
- 2023In-situ computed tomography and transient dynamic analysis of a single-lap shear test with a composite-metal clinch pointcitations
- 2023In-situ computed tomography - Analysis of a single-lap shear test with composite-metal pin joints
- 2022Approach to determine the characteristic dimensions of clinched joints by industrial X-ray computed tomography
- 2022Clinching in In Situ CT—A Novel Validation Method for Mechanical Joining Processescitations
- 2022Review on mechanical joining by plastic deformationcitations
- 2022Development of a rivet geometry for solid self-piercing riveting of thermally loaded CFRP-metal joints in automotive constructioncitations
- 2022Clinching of aluminum materials – Methods for the continuous characterization of process, microstructure and propertiescitations
- 2022Investigations on combined in situ CT and acoustic analysis during clinchingcitations
- 2022Untersuchung zum Einfluss radioopaker Zwischenschichten bei der in-situ CT geclinchter Verbindungen
- 2021In situ computed tomography – Analysis of a single-lap shear test with clinch pointscitations
- 2012Semimetallic paramagnetic nano-Bi2Ir and superconducting ferromagnetic nano-Bi3Ni by microwave-assisted synthesis and room temperature pseudomorphosiscitations
- 2012Synthesis of BiRh nanoplates with superior catalytic performance in the semihydrogenation of acetylenecitations
Places of action
Organizations | Location | People |
---|
article
Approach to determine the characteristic dimensions of clinched joints by industrial X-ray computed tomography
Abstract
Destructive micrograph analysis (MA) is the standard method for the assessment of clinched joints. However, during the joint preparation for the MA, geometric features of the joint can change due to elastic effects and closing cracks. X-ray computed tomography (CT) is a promising alternative to investigate the joint non-estructively. However, if the material properties of similar joining partners are the same, the CT is not able to correctly resolve surfaces in the joint that are close to or pressing onto each other. These surfaces are relevant for the determination of characteristic dimensions such as neck thickness and undercut. By placing a thin, highly radiopaque tin layer between the joining partners, the interfacial area in the reconstructed volume can be highlighted. In this work, a method for the localisation of the tin layer inside the joint as well as threshold value procedures for the outer joint contour in cross section images are investigated. The measured characteristic dimensions are compared with measured values from MA of the same samples and of samples without tin layer. In addition, possible effects of the tin layer on the joining point characteristics as well as problems of the MA are discussed.