Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Poláčková, Marie

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Neuspořádaný uhlík v tektonických zónách paleozoických sedimentů (devon moravskoslezského paleozoika)citations

Places of action

Chart of shared publication
Huzlík, Jiří
1 / 1 shared
Slobodník, Marek
1 / 1 shared
Slavíček, Karel
1 / 1 shared
Všianský, Dalibor
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Huzlík, Jiří
  • Slobodník, Marek
  • Slavíček, Karel
  • Všianský, Dalibor
OrganizationsLocationPeople

article

Neuspořádaný uhlík v tektonických zónách paleozoických sedimentů (devon moravskoslezského paleozoika)

  • Poláčková, Marie
  • Huzlík, Jiří
  • Slobodník, Marek
  • Slavíček, Karel
  • Všianský, Dalibor
Abstract

<jats:p>Dark carbonaceous matter staining tectonic zones and deformed carbonate strata of the Moravo-Silesian Palaeozoic were studied by several methods. Samples were taken from tectonic structures in the quarry in Čebín and in the middle quarry in Mokrá near Brno. The grey-black-coloured rocks are clearly macroscopically and microscopically deformed, show traces of brittle ductile shear deformation and with foliation developed. The dark colour is caused by the presence of black carbon matter, which is documented by methods of optical and electron (BSE) microscopy.The mineral assemblage has the character of hydrothermal mineralization migrating along tectonic structures. Mineralization consists mainly of quartz, carbonates (calcite, dolomite), phyllosilicates (mica, chlorite, kaolinite), pyrite and it also includes black carbon. Apatite is one of the interesting and unusual components. The content of organic and elemental carbon determined by the thermo-optical method in intensively mineralized zones is around 2.5 mass%.The carbonaceous matter was more accurately identified using Raman spectra. The spectra at the two studied localities have a very similar shape and are very close to the spectra of black carbon in low-grade carbon coal matter, very disordered carbon and/or amorphous carbon (coal, kerogen). The spectra show the presence of peaks in the D, G and 2D regions and are different from the spectra of ordered and disordered graphite. The presence of a small peak G in the analysed spectra (Lorentzian function) also indicates the possible presence of a small amount of more ordered carbon in the studied black carbon matter.The components of the black mineralized zones were most likely mobilized from the surrounding rock formations during the Variscan tectono-metamorphic events. The similarity with the spectra of poorly ordered carbon matter from low metamorphic conditions shows transformation temperatures of 150–280 °C, which is in accordance with other thermometric methods in the region of the southern edge of the Moravo-Silesian Palaeozoic. </jats:p>

Topics
  • impedance spectroscopy
  • mineral
  • amorphous
  • Carbon
  • microscopy