People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Inglezakis, Vassilis J.
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Structural, morphological and physiochemical analysis of SiC8H20O4/C2H5O/C7H16 modified mesoporous silica aerogels
- 2023Synthesis of a novel perovskite-carbon aerogel hybrid adsorbent with multiple metal-Lewis active sites for the removal of dyes from watercitations
- 2023Efficient mercury removal from water by using modified natural zeolites and comparison to commercial adsorbentscitations
- 2022Experimental and modeling studies of Sr2+ and Cs+ sorption on cryogels and comparison to commercial adsorbentscitations
- 2021Silica aerogels; a review of synthesis, applications and fabrication of hybrid compositescitations
- 2020Experimental study of zeolitic diffusion by use of a concentration-dependent surface diffusion modelcitations
- 2020Distributed 2D temperature sensing during nanoparticles assisted laser ablation by means of high-scattering fiber sensorscitations
- 2020Catalytic oxidation of methylene blue by use of natural zeolite-based silver and magnetite nanocompositescitations
- 2020Synthesis of biosourced silica-Ag nanocomposites and amalgamation reaction with mercury in aqueous solutionscitations
- 2020Mercury reduction and chemisorption on the surface of synthetic zeolite silver nanocompositescitations
- 2020A fractal-based correlation for time-dependent surface diffusivity in porous adsorbentscitations
- 2020Surface interactions and mechanisms study on the removal of iodide from water by use of natural Zeolite-based silver nanocompositescitations
- 2020Magnetic Fe3O4-Ag0 nanocomposites for effective mercury removal from watercitations
- 2019Variable diffusivity homogeneous surface diffusion model and analysis of merits and fallacies of simplified adsorption kinetics equationscitations
- 2019Application of nanoparticles and nanomaterials in thermal ablation therapy of cancercitations
- 2019Synthetic sodalite doped with silver nanoparticlescitations
- 2019Removal of iodide from water using silver nanoparticles-impregnated synthetic zeolitescitations
- 2019Manufacturing of ultra-fine particle coal fly ash–A380 aluminum matrix composites with improved mechanical properties by improved ring milling and oscillating microgrid mixingcitations
- 2019In situ production of high purity noble metal nanoparticles on fumed silica and catalytic activity towards 2-nitrophenol reductioncitations
- 2018A comparative study on phyllosilicate and tectosilicate mineral structural propertiescitations
- 20183 -nanoparticles as a powerful tool for membrane pore size determination and mercury removal
- 2018Synthetic coal fly ash-derived zeolites doped with silver nanoparticles for mercury (II) removal from watercitations
- 2018Silver nanoparticles impregnated zeolites derived from coal fly ashcitations
- 2012Mathematical modeling of sorption process of Cu2+ ions on analcime and clinoptilolitecitations
- 2012Automotive industry challenges in meeting EU 2015 environmental standardcitations
- 2009Automotive shredder residue (ASR)citations
- 2001Applicability of simplified models for the estimation of ion exchange diffusion coefficients in zeolitescitations
Places of action
Organizations | Location | People |
---|
article
Synthesis of biosourced silica-Ag nanocomposites and amalgamation reaction with mercury in aqueous solutions
Abstract
<p>This paper focuses on the synthesis of a new silver nanocomposite adsorbent derived from rice husk as raw material. The synthesis is based on triethoxysilane chemistry and the reduction of silver without the aid of reductant chemicals. The derived AgNPs@SiO2 nanocomposites are fully characterized and then used for the removal of mercury (II) from aqueous solutions. The results demonstrated that the affinity of the composite for mercury is high and the removal mechanism is adsorption accompanied by a redox reaction between mercury and silver followed by the formation of calomel and amalgams between silver and mercury. The silver-mercury reaction is complex, and its stoichiometry seems to scale with the silver content. Besides the importance of the surface reactions, the successful implementation of biosourced silica for mercury removal from water is useful for the development of strategies for the valorization of agricultural waste and boosts the concept of circular economy and bioeconomy.</p>