Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wit, Lynyrd De

  • Google
  • 1
  • 3
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Advances in Maintenance of Ports and Waterways: Water Injection Dredging9citations

Places of action

Chart of shared publication
Kessel, Thijs Van
1 / 1 shared
Kirichek, Alex
1 / 18 shared
Cronin, K.
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Kessel, Thijs Van
  • Kirichek, Alex
  • Cronin, K.
OrganizationsLocationPeople

booksection

Advances in Maintenance of Ports and Waterways: Water Injection Dredging

  • Kessel, Thijs Van
  • Kirichek, Alex
  • Cronin, K.
  • Wit, Lynyrd De
Abstract

The main objective of this chapter is to demonstrate developments in port maintenance techniques that have been intensively tested in major European ports. As regular port maintenance is highly expensive, port authorities are considering alternative strategies. Water Injection Dredging (WID) can be one of the most efficient alternatives. Using this dredging method, density currents near the bed are created by fluidizing fine-grained sediments. The fluidized sediment can leave the port channels and be transported away from the waterways via the natural force of gravity. WID actions can be successfully coupled with the tidal cycle for extra effectiveness. In addition, WID is combined with another strategy to reduce maintenance dredging: the nautical bottom approach, which enables the vessel to navigate through the WID-induced fluid mud layer. The nautical bottom approach uses the density or the yield stress of sediment to indicate the navigability after WID rather than the absolute depth to the sediment bed. Testing WID-based port maintenance requires thorough preparation. Over the years modeling and monitor-ing tools have been developed in order to test and optimize WID operations. In this chapter, the application of the recently developed tools is discussed.

Topics
  • density
  • impedance spectroscopy