Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Georgescu, Constantin

  • Google
  • 2
  • 7
  • 20

"Dunarea de Jos" University of Galati

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Micro UAVs with Fixed Wings: Design, Technological Solutions, and Testscitations
  • 2020Tribological Behavior of Polymers and Polymer Composites20citations

Places of action

Chart of shared publication
Constantinescu, Mihai
1 / 1 shared
Constantinescu, Sorin
1 / 1 shared
Andrei, Constantin Cristian
1 / 1 shared
Vasiliu, Alexandru Viorel
1 / 1 shared
Ojoc, George Ghiocel
1 / 2 shared
Deleanu, Lorena
1 / 5 shared
Iorga, Daniel
1 / 1 shared
Chart of publication period
2024
2020

Co-Authors (by relevance)

  • Constantinescu, Mihai
  • Constantinescu, Sorin
  • Andrei, Constantin Cristian
  • Vasiliu, Alexandru Viorel
  • Ojoc, George Ghiocel
  • Deleanu, Lorena
  • Iorga, Daniel
OrganizationsLocationPeople

booksection

Tribological Behavior of Polymers and Polymer Composites

  • Georgescu, Constantin
Abstract

<jats:p>This chapter means to explain the tribological behavior of polymer-based materials, to support a beneficial introducing of those materials in actual applications based on test campaigns and their results. Generally, the designers have to take into consideration a set of tribological parameters, not only one, including friction coefficient, wear, temperature in contact, contact durability related to application. Adding materials in polymers could improve especially wear with more than one order of magnitude, but when harder fillers are added (as glass beads, short fibers, minerals) the friction coefficient is slightly increased as compared to neat polymer. In this chapter, there are presented several research studies done by the authors, from which there is point out the importance of composite formulation based on experimental results. For instance, for PBT sliding on steel there was obtained a friction coefficient between 0.15 and 0.3, but for the composite with PBT + micro glass beads, the value of friction coefficient was greater. Adding a polymer playing the role of a solid lubricant (PTFE) in these composites and also only in PBT, decreased the friction coefficient till a maximum value of 0.25. The wear parameter, linear wear rate of the block (from block-on-ring tester) was reduced from 4.5 μm/(N⋅km) till bellow 1 μm/(N⋅km) for a dry sliding regime of 2.5…5 N, for all tested sliding velocities, for the composite PBT + 10% glass beads +10% PTFE, the most promising composite from this family of materials. This study emphasis the importance of polymer composite recipe and the test parameters. Also there are presented failure mechanisms within the tribolayer of polymer-based materials and their counterparts.</jats:p>

Topics
  • impedance spectroscopy
  • mineral
  • polymer
  • glass
  • glass
  • steel
  • composite
  • durability