People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Echabaane, Mosaab
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
booksection
Development of An Impedimetric Nanoplatform for Cu(II) Detection Based on Carbon Dots and Chitosan Nanocomposite
Abstract
<jats:p>In this chapter, an impedemitric sensor based on carbon dots (CDs) and chitosan (CS) nanocomposite for Cu (II) detection has been studied. The synthesized carbon dots were characterized by TEM, FTIR, XRD, UV-visible, and PL. The obtained carbon dot/chitosan/GCE structure was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The behavior, interface processes of GCE/electrolyte, and sensor properties of the studied structures were investigated. In particular, the performance of the proposed impedimetric sensor to Cu ions, such as sensitivity, dynamic range, detection limit, and selectivity, was studied. Subsequently, the proposed sensor was applied for the determination of copper ions in real water samples.</jats:p>