Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Garah, Mohamed El

  • Google
  • 1
  • 2
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023High Entropy Thin Films by Magnetron Sputtering: Deposition, Properties and Applications2citations

Places of action

Chart of shared publication
Sanchette, Frederic
1 / 2 shared
Schuster, Frederic
1 / 4 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Sanchette, Frederic
  • Schuster, Frederic
OrganizationsLocationPeople

booksection

High Entropy Thin Films by Magnetron Sputtering: Deposition, Properties and Applications

  • Sanchette, Frederic
  • Schuster, Frederic
  • Garah, Mohamed El
Abstract

<jats:p>Surface coating is of a great interest to increase the performances of the materials and extend its lifetime. High entropy films (HEFs) become the hot spot for developing surface engineering applications due to their good performances. They are reported to have superior properties such as good corrosion, wear resistance and excellent high temperature oxidation. Various deposition techniques have been exploited to fabricate HEFs such as laser cladding, spraying, sputter deposition and electrochemical deposition. These techniques are known to be an easy process to achieve a rapid quenching. Magnetron sputtering is seen as the most efficient methods to deposit the HEFs. Different gas can be used to prepare the ceramic materials. Besides, the deposition parameters reveal a strong influence on the physicochemical properties of HEFs. Working pressure, substrate temperature, bias voltage and gas mixture flow ratios have been reported to influence the morphology, microstructure, and functional properties of HEFs. The chapter overviews the development of the recent HEFs prepared by magnetron sputtering technique. First, it describes the principal of the technique. Then, it reports the classes of HEFs followed by the effect of the deposition parameters on their different properties. Applications have been developed using some HEFs for biomaterials and machining process.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • microstructure
  • surface
  • corrosion
  • thin film
  • wear resistance
  • ceramic
  • biomaterials
  • quenching