Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Villora, Gloria

  • Google
  • 4
  • 6
  • 117

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Accelerated Simple Preparation of Curcumin-Loaded Silk Fibroin/Hyaluronic Acid Hydrogels for Biomedical Applications18citations
  • 2021Silk Fibroin Nanoparticles: Synthesis and Applications as Drug Nanocarriers9citations
  • 2020Improving Anticancer Therapy with Naringenin-Loaded Silk Fibroin Nanoparticles67citations
  • 2020Complex Polysaccharide-Based Nanocomposites for Oral Insulin Delivery23citations

Places of action

Chart of shared publication
Montalbán, M. G.
1 / 1 shared
Fuster, Marta G.
1 / 1 shared
Moulefera, Imane
1 / 2 shared
Carissimi, Guzmán
1 / 1 shared
Sebba, Fatima Zohra
1 / 2 shared
Chaala, Mohamed
1 / 1 shared
Chart of publication period
2023
2021
2020

Co-Authors (by relevance)

  • Montalbán, M. G.
  • Fuster, Marta G.
  • Moulefera, Imane
  • Carissimi, Guzmán
  • Sebba, Fatima Zohra
  • Chaala, Mohamed
OrganizationsLocationPeople

booksection

Silk Fibroin Nanoparticles: Synthesis and Applications as Drug Nanocarriers

  • Villora, Gloria
Abstract

<jats:p>The use of nanoparticles in biomedical fields is a very promising scientific area and has aroused the interest of researchers in the search for new biodegradable, biocompatible and non-toxic materials. This chapter is based on the features of the biopolymer silk fibroin and its applications in nanomedicine. Silk fibroin, obtained from the Bombyx mori silkworm, is a natural polymeric biomaterial whose main features are its amphiphilic chemistry, biocompatibility, biodegradability, excellent mechanical properties in various material formats, and processing flexibility. All of these properties make silk fibroin a useful candidate to act as nanocarrier. In this chapter, the structure of silk fibroin, its biocompatibility and degradability are reviewed. In addition, an intensive review on the silk fibroin nanoparticle synthesis methods is also presented. Finally, the application of the silk fibroin nanoparticles for drug delivery acting as nanocarriers is detailed.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • biocompatibility