People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Almeida-Didry, Sonia De
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023On Recent Progress on Core Shell Nanostructures of Colossal Permittivity Materials for Capacitors: Synthesis and Dielectric Properties
- 2019Comparison of colossal permittivity of CaCu3Ti4O12 with commercial grain boundary barrier layer capacitorcitations
- 2018Control of grain boundary in alumina doped CCTO showing colossal permittivity by core-shell approachcitations
- 2015Capacitance Scaling of Grain Boundaries with Colossal Permittivity of CaCu3Ti4O12-Based Materialscitations
- 2014Leading Role of Grain Boundaries in Colossal Permittivity of Doped and Undoped CCTOcitations
Places of action
Organizations | Location | People |
---|
booksection
On Recent Progress on Core Shell Nanostructures of Colossal Permittivity Materials for Capacitors: Synthesis and Dielectric Properties
Abstract
<jats:p>Dielectric materials with colossal permittivity show promise for the development and miniaturization of high-performance capacitors. CaCu3Ti4O12 (CCTO) improvement for multilayer ceramic capacitors (MLCCs) has been achieved. CCTO shows a large ε′ of ∼104 over a temperature range. This behavior is due to a potential barrier at the grain boundaries (GBs). CCTO ceramics have an electrically heterogeneous microstructure with semi-conducting grains and more insulating GBs, analyzed by an internal barrier layer capacitor (IBLC) structure model. Therefore, the dielectric properties of these materials can be improved by changing the electrical properties of the grains and GBs. In this context, core-shell approaches to control the GBs have been developed. This chapter presents advanced synthesis techniques (by chemistry way but also by cold plasma) to design the dielectric grains of CCTO by shells of different nature, morphology and crystallinity and shows the impact on the macroscopic properties.</jats:p>