Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Remmouche, Riad

  • Google
  • 3
  • 8
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Electrical Characteristics of Single Layer Graphene Ribbons in a Wide Temperature Rangecitations
  • 2023Electrical Characteristics of Single Layer Graphene Ribbons in a Wide Temperature Rangecitations
  • 2013Formation of silicon nanocrystals by thermal annealing of low-pressure chemical-vapor deposited amorphous SiNx (x=0.16) thin films10citations

Places of action

Chart of shared publication
Toufik, Benkedidah
1 / 1 shared
Fates, Rachid
2 / 2 shared
Benkedidah, Toufik
1 / 1 shared
Bouridah, Hachemi
1 / 2 shared
Haoues, Hakim
1 / 1 shared
Temple-Boyer, Pierre
1 / 9 shared
Mansour, Farida
1 / 2 shared
Riad Beghoul, Mahmoud
1 / 1 shared
Chart of publication period
2023
2013

Co-Authors (by relevance)

  • Toufik, Benkedidah
  • Fates, Rachid
  • Benkedidah, Toufik
  • Bouridah, Hachemi
  • Haoues, Hakim
  • Temple-Boyer, Pierre
  • Mansour, Farida
  • Riad Beghoul, Mahmoud
OrganizationsLocationPeople

article

Electrical Characteristics of Single Layer Graphene Ribbons in a Wide Temperature Range

  • Toufik, Benkedidah
  • Fates, Rachid
  • Remmouche, Riad
Abstract

<jats:p>This paper provides electrical characterization of single layer graphene ribbon devices defined as back-gated graphene transistors. The two-terminal back-gated graphene ribbon devices were fabricated on a conventional Si substrate covered by a 90 nm-thick thermal SiO2. The chemical vapor deposition process was used for the graphene layer deposition and its quality was checked with optical microscopy, scanning electron microscopy and Raman spectroscopy. For the device fabrication, optical lithography was used for electrode patterns through a mask, and Ti/Au (10 nm/100 nm) metallic contacts were deposited by thermal evaporation. We report low and high field electrical measurements of several devices, under a controlled environment over a wide temperature range, from 77 to 300 K. At 77 K, the drain current decreases, i.e. the resistance of the graphene increases, and the nonlinearity is still present. The maximum influence of the temperature is reached at the charges neutrality point, and we observe that the temperature could influence the position of the charge neutrality point. This indicates that the carriers are thermally activated, which yields a least pronounced current with the increase of the back gate voltage.</jats:p>

Topics
  • impedance spectroscopy
  • scanning electron microscopy
  • optical microscopy
  • Raman spectroscopy
  • evaporation
  • chemical vapor deposition
  • lithography