Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mahato, Swarup

  • Google
  • 1
  • 2
  • 6

Aarhus University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Actuation Performance of Macro Fibre Composite (MFC) as Actuator in Vibration Reduction of Cantilever Beams6citations

Places of action

Chart of shared publication
Rimašauskienė, Rūta
1 / 4 shared
Raza, Ali
1 / 13 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Rimašauskienė, Rūta
  • Raza, Ali
OrganizationsLocationPeople

article

Actuation Performance of Macro Fibre Composite (MFC) as Actuator in Vibration Reduction of Cantilever Beams

  • Rimašauskienė, Rūta
  • Raza, Ali
  • Mahato, Swarup
Abstract

<jats:p>This study proposes a vibration suppression technique that uses piezoelectric material to restrict the dynamic amplitudes of a cantilever beam. The finite element analysis (FEA) model of the cantilever is created and incorporated with Macro Fiber Composite (MFC8507-P2) in the ANSYS framework. A comparative study has been performed using three different types of materials i.e., Polylactic acid (PLA), PLA with Short Carbon Fibers (PLA-SCF Composite), and PLA with Continuous Carbon Fibers (PLA-CCF Composite), for the beam.  An external disturbance causes the beam to vibrate, and the MFC8507-P2 patch provides a counter-force to the structure to reduce vibrations. The MFC8507-P2 patch is placed at an appropriate location on each beam to suppress vibration induced by the initial fundamental modes. Modal analysis has been performed to find the natural frequencies and the contribution of each mode to the overall response under dynamic loading conditions.  Transient structural analysis is performed to observe the influence of the MFC8507-P2 patch on vibration amplitude with time. Furthermore, frequency response analysis has been performed to determine the impact of the MFC8507-P2 patch on the vibration amplitude of the natural modes. The vibration response has been measured at the tip of the beam and the simulation results validate that the vibration amplitude decreases as the applied voltage increases.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • simulation
  • composite
  • finite element analysis
  • piezoelectric material