People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tarnowski, Michał
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2021Shaping the structure and properties of titanium and Ti6Al7Nb titanium alloy in low-temperature plasma nitriding processescitations
- 2021Formation of Nitrogen Doped Titanium Dioxide Surface Layer on NiTi Shape Memory Alloycitations
- 2021Plasma modification of carbon coating produced by RF CVD on oxidized NiTi shape memory alloy under glow-discharge conditionscitations
- 2021The Microstructure and Properties of Carbon Thin Films on Nanobainitic Steelcitations
- 2020Influence of nitrided and nitrocarburised layers on the functional properties of nitrogen-doped soft carbon-based coatings deposited on 316L steel under DC glow-discharge conditionscitations
- 2020Effect of nitriding conditions of Ti6Al7Nb on microstructure of TiN surface layercitations
- 2020TEM investigations of active screen plasma nitrided Ti6Al4V and Ti6Al7Nb alloyscitations
- 2020Effect of Nitrided and Nitrocarburised Austenite on Pitting and Crevice Corrosion Resistance of 316 LVM Steel Implantscitations
- 2019TEM studies of low temperature cathode-plasma nitrided Ti6Al7Nb alloycitations
- 2018Structure and hemocompatibility of nanocrystalline titanium nitride produced under glow-discharge conditionscitations
- 2018Structure and physico-mechanical properties of low temperature plasma treated electrospun nanofibrous scaffolds examined with atomic force microscopycitations
- 2018Modification of titanium and its alloys implants by low temperature surface plasma treatments for cardiovascular applicationscitations
- 2018Structure and properties of composite surface layers produced on NiTi shape memory alloy by a hybrid methodcitations
- 2017Properties of Ti-6Al-7Nb titanium alloynitrocarburized under glow discharge conditions
- 2017Odporność korozyjna warstw azotonawęglanych wytworzonych na stopie tytanu Ti6Al7Nbcitations
- 2017Corrosion resistance of NiTi shape memory alloy after hybrid surface treatment using low-temperature plasmacitations
- 2017Influence of amorphous carbon layers on tribological properties of polyetheretherketone composite in contactwith nitrided layer produced on Ti6Al4V titanium alloycitations
- 2016Cathodic Cage Plasma Nitriding of Ti6Al4V Alloycitations
- 2016Wpływ topografii powierzchni na odporność korozyjną stopu z pamięcią kształtu NiTi po procesie azotowania jarzeniowego w niskotemperaturowej plazmie / Influence of surface topography on the corrosion resistance of NiTi shape memory alloy nitrided at low-temperature plasma process
- 2015The importance of surface topography for the biological properties of nitrided diffusion layers Produced on Ti6Al4V titanium alloycitations
Places of action
Organizations | Location | People |
---|
article
Cathodic Cage Plasma Nitriding of Ti6Al4V Alloy
Abstract
Glow discharge nitriding is being used increasingly more often for modifying the properties of titanium and its alloys with the aim to increase their frictional wear resistance, fatigue strength, and, in the case of medical applications, to eliminate the metallosis effect. Unlike PVD methods, ion nitriding ensures the formation of diffusive layers with very good adhesion to the substrate, but which still have some disadvanteges such as the “edge effect” or “hollow cathode effect” which hinders treatment of complex workpieces. The paper compares nitrided layers produced on Ti6Al4V alloy using two different types of nitriding processes. The first process is conventional dc plasma nitriding (DCPN) where the samples were placed at the cathode potential, while the second one is a new method of cathodic cage plasma nitriding (CCPN) process, where the substrate is insulated from the cathode and anode. The experiments have shown that the treatment conducted in a cathodic cage can be alternative for conventional ion nitriding, especially when used for small parts with complicated shapes used in the space or medical industry. DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7343