Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kamaldi, Alfian

  • Google
  • 2
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Perkuatan Balok Beton Bertulang Yang Mengalami Kegagalan Geser Menggunakan Metode Deep Embedmentcitations
  • 2023Disain Kebutuhan Tulangan Glass Fiber Reinforced Polymer (GFRP) Untuk Elemen Struktur Pada Bangunan Beton Bertulangcitations

Places of action

Chart of shared publication
Kurniawan, Fahmuji
1 / 1 shared
Yuniarto, Enno
1 / 2 shared
Putri, Dhea Triviananda
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Kurniawan, Fahmuji
  • Yuniarto, Enno
  • Putri, Dhea Triviananda
OrganizationsLocationPeople

article

Disain Kebutuhan Tulangan Glass Fiber Reinforced Polymer (GFRP) Untuk Elemen Struktur Pada Bangunan Beton Bertulang

  • Kamaldi, Alfian
  • Putri, Dhea Triviananda
Abstract

<jats:p>Fiber Reinforced Polymer is a combination of two main materials Resin Polymer (plastic) as a binder matrix and Fiber (fiber) as reinforcement. This material has three fibers, namely Carbon, Glass, and Aramid. Glass fiber was used in this study, because it has a greater strain compared to other fibers. This study aims to design reinforced concrete structures using steel reinforcement and GFRP as well as to compare the reinforcement requirements of each reinforced concrete. Calculation of reinforcement for steel reinforced concrete refers to SNI 1726-2019, while for GFRP reinforced concrete it is based on ACI 440 1R-2015. This research begins by collecting data in the form of a design structure drawing of a 6-storey hypothetical building, with a total building height of 23 m. The hypothesis building has the number of spans in the X-axis direction is 5 with a distance between columns of 6 m, while the number of spans in the Y direction is 3 with a distance between columns of 5 m. The column dimensions for all floors are 60 cm x 60 cm, while the beam dimensions are 40 cm x 40 cm. The thickness of the floor and roof slabs is 12 cm and the concrete quality is 30 MPa. For the calculation of structural loading, dead load, live load and earthquake load are used and the design of reinforcement for conventional steel reinforced concrete structures and GFRP is carried out. Steel reinforced concrete structures with GFRP reinforced concrete have differences in the amount and diameter of reinforcement required. For beam elements bearing steel reinforcement, 24 pieces of flexural reinforcement are needed with a diameter of 19 mm, while for beam elements, GFRP reinforcement requires 12 pieces of flexural reinforcement with a diameter of 1 inch to 1,128 inches. For the field area, steel reinforcement beam elements need 12 pieces with a diameter of 19 mm, while for GFRP reinforcing beam elements require 8 pieces of flexural reinforcement with a diameter of 0.875 inch to 1.128 inch. In column elements, steel reinforcement and GFRP reinforcement require the same amount of main reinforcement, which is 32 pieces. However, in terms of diameter, steel reinforcement requires 25 mm diameter reinforcement, while GFRP is 1 inch in diameter.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • glass
  • glass
  • steel
  • resin
  • drawing