Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yuniarto, Enno

  • Google
  • 2
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Perkuatan Balok Beton Bertulang Yang Mengalami Kegagalan Geser Menggunakan Metode Deep Embedmentcitations
  • 2023Analisis Elemen Hingga Terhadap Perilaku Balok Beton Bertulang Yang Diperkuat Dengan Menggunakan Metode Deep Embedmentcitations

Places of action

Chart of shared publication
Kurniawan, Fahmuji
1 / 1 shared
Kamaldi, Alfian
1 / 2 shared
Anwar, Muhammad
1 / 3 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Kurniawan, Fahmuji
  • Kamaldi, Alfian
  • Anwar, Muhammad
OrganizationsLocationPeople

article

Perkuatan Balok Beton Bertulang Yang Mengalami Kegagalan Geser Menggunakan Metode Deep Embedment

  • Kurniawan, Fahmuji
  • Yuniarto, Enno
  • Kamaldi, Alfian
Abstract

<jats:p>Bridges are infrastructure buildings that are commonly used and very functional in everyday. One of the structural components of the bridge is a reinforced concrete beam as a load bearer that will be forwarded to the foundation. The shear capacity of reinforced concrete beam structures sometimes cannot meet the existing requirements. This can be caused by increased loads, inadequate shear strength in the initial design and material damage due to natural factors. There are several methods that have been carried out to overcome the decrease in shear strength in beam structures, namely reinforcement methods by externally bonded (EB) and near-surface mounted (NSM). In reality, shear reinforcement with EB and NSM methods in implementation only relies on epoxy adhesion and concrete blankets, which still causes structural failure. The deep embedment strengthening method (DE) can be proposed as a shear reinforcement for reinforced concrete beams to overcome the previous problems. Reinforcement with DE method is a shear reinforcement that is reinforced in the core of reinforced concrete beams. This research was conducted by embedding 8 reinforcements vertically with a distance of 200 mm along the shear span. In this study, finite element modeling was carried out using ABAQUS. The results of finite element modeling with the DE method showed that the maximum load was 30.646 kN and the maximum deflection was 13.00 mm. The collapse model that occurs from finite element modeling on test specimens with DE reinforcement experiencing flexural failure.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • strength