Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Memon, Sheeraz

  • Google
  • 3
  • 7
  • 83

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019Coal bottom ash as a sustainable supplementary cementitious material for the concrete exposed to seawater16citations
  • 2019Effects of Grinding Process on the Properties of the Coal Bottom Ash and Cement Paste43citations
  • 2018Influence of ground coal bottom ash on the properties of concrete24citations

Places of action

Chart of shared publication
Wan Ibrahim, Mohd Haziman
3 / 22 shared
Arshad, Mohd Fadzil
3 / 12 shared
Jamaluddin, Norwati
3 / 18 shared
Mangi, Sajjad Ali
1 / 3 shared
Setiawan, Muhammad Ikhsan
1 / 1 shared
Mudjanarko, Sri Wiwoho
1 / 1 shared
Jaya, Ramadhansyah Putra
1 / 22 shared
Chart of publication period
2019
2018

Co-Authors (by relevance)

  • Wan Ibrahim, Mohd Haziman
  • Arshad, Mohd Fadzil
  • Jamaluddin, Norwati
  • Mangi, Sajjad Ali
  • Setiawan, Muhammad Ikhsan
  • Mudjanarko, Sri Wiwoho
  • Jaya, Ramadhansyah Putra
OrganizationsLocationPeople

article

Effects of Grinding Process on the Properties of the Coal Bottom Ash and Cement Paste

  • Wan Ibrahim, Mohd Haziman
  • Arshad, Mohd Fadzil
  • Jamaluddin, Norwati
  • Memon, Sheeraz
Abstract

The grinding process is necessary to convert original coal bottom ash (CBA) into a powder form. The aim of this study is to evaluate the grinding process effects on physical properties of CBA, it influences on consistency and setting time of cement paste and to predict it potentiality based on chemical characteristics to reduce the alkali-silica reaction (ASR) in concrete. The CBA is the by-product of coal based thermal power plant. Due to high production of electricity in Malaysia, the excess amount of CBA has been produced annually and it causes the environmental problems. Therefore, it is necessary to come up with advanced solutions for that pollution. This study considered the different grinding periods i.e. 2, 10, 20, and 40hrs as to produce different particle fineness. It was perceived through the laboratory findings that the more the grinding period, finer the particle sizes. Besides that, cement paste with 10, 20 and 30% of ground CBA as a substitute of ordinary portland cement (OPC) by weight was prepared, it was observed that the consistency of OPC paste increases with the addition of ground CBA. Moreover, initial and final setting time of cement paste containing ground CBA was observed higher than the OPC paste. Hence, based on experimental analysis and energy efficiency scenario, grinding period of 20hrs with specific surface area 3835.75 cm 2 /g is suggested for the future studies.

Topics
  • impedance spectroscopy
  • surface
  • grinding
  • cement