Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Krzywinski, F.

  • Google
  • 1
  • 6
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Measurement methods of dynamic yarn tension in a ring spinning process18citations

Places of action

Chart of shared publication
Hasan, M. M. B.
1 / 2 shared
Cherif, Chokri
1 / 112 shared
Hossain, Mahmud
1 / 1 shared
Unger, Reimar
1 / 3 shared
Nocke, Andreas
1 / 34 shared
Abdkader, A.
1 / 4 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Hasan, M. M. B.
  • Cherif, Chokri
  • Hossain, Mahmud
  • Unger, Reimar
  • Nocke, Andreas
  • Abdkader, A.
OrganizationsLocationPeople

article

Measurement methods of dynamic yarn tension in a ring spinning process

  • Hasan, M. M. B.
  • Cherif, Chokri
  • Hossain, Mahmud
  • Krzywinski, F.
  • Unger, Reimar
  • Nocke, Andreas
  • Abdkader, A.
Abstract

<p>The most common measuring method to characterise the dynamic yarn path in the ring spinning process is to measure the yarn tension, where the yarn path is almost straight. However, it is much more complex to measure the yarn tension at the other positions, for example, between the yarn guide and traveller (balloon zone) and between the traveller and winding point of the cop (winding zone), as the yarn rotates continuously around the spindle axis. In this paper, two new methods of yarn tension measurement in the balloon zone are proposed. In the first method, the balloon shape was first recorded with a high speed camera. The balloon tension was then calculated by comparing the yarn strain (occurring in the balloon zone) measured by a digital image analysis program with the stress-strain curve of the yarn produced. In the second method, the radial forces of the rotating balloon were measured by using modified measurement techniques for measurement of yarn tension. Moreover a customised sensor was developed to measure the winding tension between the traveller and cop. The values measured were validated with a theoretical model and a good correlation between the measured and theoretical values could be revealed.</p>

Topics
  • impedance spectroscopy
  • stress-strain curve
  • spinning