Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Szkudelski, Szymon

  • Google
  • 2
  • 7
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Methods to Increase the Protective Effectiveness of Add-on Armour made of Perforated Ultra-High-Strength Nanobainitic Steel Plates3citations
  • 2021New Copper Alloys Used to Make Products Intended for Contact with Drinking Water4citations

Places of action

Chart of shared publication
Borowski, Jacek
1 / 1 shared
Walicki, Marek
1 / 1 shared
Zając, Kamil
1 / 1 shared
Garbarz, Bogdan
1 / 1 shared
Marcisz, Jarosław
1 / 1 shared
Kowalski, Aleksander
1 / 6 shared
Burian, Wojciech
1 / 3 shared
Chart of publication period
2023
2021

Co-Authors (by relevance)

  • Borowski, Jacek
  • Walicki, Marek
  • Zając, Kamil
  • Garbarz, Bogdan
  • Marcisz, Jarosław
  • Kowalski, Aleksander
  • Burian, Wojciech
OrganizationsLocationPeople

article

Methods to Increase the Protective Effectiveness of Add-on Armour made of Perforated Ultra-High-Strength Nanobainitic Steel Plates

  • Borowski, Jacek
  • Szkudelski, Szymon
  • Walicki, Marek
  • Zając, Kamil
  • Garbarz, Bogdan
  • Marcisz, Jarosław
  • Kowalski, Aleksander
  • Burian, Wojciech
Abstract

<jats:p>The mechanical properties of industrially produced perforated steel plates are obtained by hardening and low-temperature tempering to produce a martensitic microstructure. Another morphological type of steel microstructure that allows for ultra-high strength and, at the same time, a level of ductility that qualifies it for use in armour is nanobainite. Research into nanobainitic steels has led to the development of plates manufacturing technology at a level that can be implemented in industrial production, and has confirmed the high potential of this material for use as additional armour in the form of perforated plates. This paper reports the results of research aimed at developing a technology for the production of perforated armour plates made of nanobainitic steel, with properties competitive with currently available perforated steel plates on the world market with the highest protective effectiveness under conditions of multi-hit firing tests with small and medium calibre ammunition. The tests were performed on 300260 mm plates, with the nominal thicknesses of 8 mm, 6 mm and 4 mm, produced from industrially melted nanobainitic steel NANOS-BA. The protective effectiveness of nanobainitic perforated plates in a system with a solid armour steel backing plate of 500 HBW hardness was tested by multi-hit firing, according to the procedures set out in the STANAG 4569 and AEP-55 vol. 1 specifications (adapted to the format of tested plates), against selected projectile types assigned to protection levels 2 and 3. Based on the analysis of the results of the firing tests and the macroscopic and microscopic examinations of the perforated plates before and after firing, the optimum perforation method was selected and the most favourable geometrical and dimensional arrangements of the perforations were determined for different plate thicknesses.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • strength
  • steel
  • hardness
  • ductility
  • tempering