Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Saeed, Asfia

  • Google
  • 1
  • 7
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022SURFACE MICROHARDNESS OF MICROHYBRID AND NANOCOMPOSITE AFTER STORAGE IN MOUTH WASHES3citations

Places of action

Chart of shared publication
Waqas, Mohammad Abi
1 / 1 shared
Arooj, Zartashia
1 / 1 shared
Irshad, Nadia
1 / 2 shared
Sarfaraz, Zenab
1 / 1 shared
Malik, Aeeza
1 / 1 shared
Shaukat, Malik Saleem
1 / 1 shared
Manzoor, Sadia
1 / 5 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Waqas, Mohammad Abi
  • Arooj, Zartashia
  • Irshad, Nadia
  • Sarfaraz, Zenab
  • Malik, Aeeza
  • Shaukat, Malik Saleem
  • Manzoor, Sadia
OrganizationsLocationPeople

article

SURFACE MICROHARDNESS OF MICROHYBRID AND NANOCOMPOSITE AFTER STORAGE IN MOUTH WASHES

  • Waqas, Mohammad Abi
  • Arooj, Zartashia
  • Saeed, Asfia
  • Irshad, Nadia
  • Sarfaraz, Zenab
  • Malik, Aeeza
  • Shaukat, Malik Saleem
  • Manzoor, Sadia
Abstract

<jats:p>Background: Dental composites are aesthetic direct restorative material. However, the effect of mouthwashes on the durability of the material is controversial. This study evaluated and compared the influence of mouthwash composition on the surface hardness of nanofilled (Z350XT) and microhybrid (P60) resin composites. Methods: Comparative in-vitro study was conducted over 6 months at Multan Medical &amp; Dental College. Sixty-four disc-shape specimens of each {nanofilled (Z350XT) and microhybrid (P60)} resin composite were prepared and stored in distilled water at 37°C for 24 hours. The baseline microhardness reading (To) was recorded by Vickers micro-hardness tester. Samples were then randomly divided into four groups (n=16) and stored in Listerine Cool Mint, Colgate Plax, Clinica and distilled water (control). The hardness test was repeated after 12 hours and 24 hours of storage. Results: Nanocomposite (Z350XT) had statistically (p&lt;0.01) higher surface hardness. A significant reduction (p≤0.05) in microhardness was observed after immersion of samples in mouthwashes. The reduction in surface hardness was dependent on the immersion time and composition of mouthwashes. Listerine Cool Mint (alcohol-based mouthwash) had greatest degradation effect. Conclusion: Mouth rinses negatively impacted the surface microhardness of the tested resin-based materials. Alcohol-based mouthwashes had greater potential for reducing microhardness. Microhybrid composite appears to be a more suitable material for restoring teeth in patients accustomed to using regular mouthwashes.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • surface
  • hardness
  • durability
  • resin
  • alcohol