Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

De Oliveira, Bárbara

  • Google
  • 2
  • 6
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Influence of Silanization Treatment of Sponge Gourd (Luffa cylindrica) Fibers on the Reinforcement of Polyester Composites: A Brief Report8citations
  • 2019Microstructure and mechanical properties of as-cast and annealed high strength low alloy steel2citations

Places of action

Chart of shared publication
Firmino, Thierry Colares
1 / 1 shared
Monteiro, Sergio
1 / 5 shared
Melo, Eduarda Chiabai Rodrigues De
1 / 1 shared
Camillo, Mayara De Oliveira
1 / 1 shared
Marcelino, Paulo Roberto Correia
1 / 1 shared
Silva, Roseméri Barbosa Dos Santos Da
1 / 1 shared
Chart of publication period
2022
2019

Co-Authors (by relevance)

  • Firmino, Thierry Colares
  • Monteiro, Sergio
  • Melo, Eduarda Chiabai Rodrigues De
  • Camillo, Mayara De Oliveira
  • Marcelino, Paulo Roberto Correia
  • Silva, Roseméri Barbosa Dos Santos Da
OrganizationsLocationPeople

article

Microstructure and mechanical properties of as-cast and annealed high strength low alloy steel

  • De Oliveira, Bárbara
Abstract

This paper presents a study on the microstructure and mechanical properties of a microalloyed HSLA steel solidified by continuous casting process and annealed at 1100 &amp;deg;C for 1 hour. The techniques of confocal microscopy, scanning electron microscopy and hardness, tensile and Charpy mechanical tests were used. The results of this research showed that the microstructure of the sample in the as-received condition was mainly composed of acicular ferrite and aggregates of ferrite and carbides. Non-metallic inclusion characterization of as-cast steel showed that calcium content was not enough to modify the morphology of some aluminates. After thermal treatment, the initial microstructure was transformed into polygonal ferrite and pearlite. In both conditions, different types of precipitates were found, which were classified according to their distribution in the microstructure. The steel with solidification structure showed a higher tensile strength, but its application would be unlikely in components that require good impact strength. </jats:p>

Topics
  • morphology
  • inclusion
  • scanning electron microscopy
  • strength
  • carbide
  • steel
  • hardness
  • precipitate
  • tensile strength
  • Calcium
  • solidification
  • confocal microscopy
  • continuous casting
  • cast steel